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Abstract 

Gut microbiota was only considered as a commensal organism that aids in digestion, but recent studies 
revealed that the microbiome play a critical role in both physiological and pathological immune system. 
The gut microbiome composition is altered by environmental factors such as diet and hygiene, and the 
alteration affects immune cells, especially T cells. Advanced genomic techniques in microbiome research 
defined that specific microbes regulate T cell responses and the pathogenesis of immune-mediated 
disorders. Here, we review features of specific microbes-T cell crosstalk and relationship between the 
microbes and immunopathogenesis of diseases including in cancers, autoimmune disorders and allergic 
inflammations. We also discuss the limitations of current experimental animal models, cutting-edge 
developments and current challenges to overcome in the field, and the possibility of considering gut 
microbiome in the development of new drug. 
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Introduction 
The microbiota, which has been studied for 

decades, forms a complex network evolving with 
humans [1-3]. The gut microbiota influences the 
development, homeostasis, and function of the 
immune system [4, 5]. 

The gut microbiota interacts to T cells with 
antigen-specific recognition [6], or signals via Toll-like 
receptors and Nod-like receptors. These signals 
mediate cell induction and function, thus ensuring 
homeostasis in the human immune system [7]. The 
microbiota species has been shown to be associated 
with the differentiation of T cells such as helper T (Th) 
1, Th2, Th17, and regulatory T (Treg) cells [8-10]. Also, 
short-chain fatty acids (SCFAs), metabolites of the gut 
microbiota, regulate T cell differentiation and 
activation [11]. In addition, germ-free (GF) mice have 
reduction of Treg cells, the absence of Th17 cells, and 
imbalance of Th1/Th2 cells, which is skewed into the 
Th2 response [12]. The immune phenotype in GF mice 
was modulated to Th1 skewed-responses by 
reconstitution of specific microbe [8]. In recent mass 

cytometry by time-of-flight (CyTOF®) analysis, 
immune landscape in specific pathogen-free (SPF) 
mice was significantly distinct from wildling mice 
which has wildling bacterial microbiome and wildling 
mice was more similarly phenocopied the immune 
response of humans than SPF mice [13]. Therefore, 
these studies indicate that gut microbiota can regulate 
immune landscape and responses including 
differentiation, homeostasis and development of T 
cells, and alternation of gut microbiota may be closely 
linked to the pathogenesis of immune-mediated 
diseases.  

Gut microbiota dysbiosis is caused by a variety 
of mechanisms, including microbiome imbalance, 
immune dysregulation, proinflammatory mecha-
nisms, and metabolic activities. Dysbiosis lead to 
various T cell-related diseases, including rheumatoid 
arthritis (RA), type 1 and type 2 diabetes, asthma, 
cardiovascular disease, inflammatory bowel disease 
(IBD), cancer, liver disease, and psychiatric disorders 
[14-20]. 
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Despite the importance of understanding micro-
biome-T cell interactions, most immunology 
experiments have been performed with limited 
microbiome composition such as SPF or GF mice. 
Thus, experimental results using gnotobiotic mouse 
models in the drug development stage cannot fully 
represent humans [21]. To address these limitations, a 
fecal microbiota transplant (FMT) mouse model with 
a gut microbiota similar to that of humans was 
developed using human or wild mouse feces [22-24]. 
The FMT mouse model has an abundant and more 
diverse gut microbiome than the current experimental 
animal models [23]. In addition, mice implanted with 
the wild mouse or human microbiota not only exhibit 
different degrees of microbial diversity but their 
systemic immunity is also affected. 

Here, we discuss the specific microbes-T cell 
crosstalk, and distribution of the gut microbiota 
according to T cell-mediated diseases. In addition, we 
discuss the need to use the FMT mouse model to 
overcome the limitations of the current experimental 
mouse model, and to consider the human gut 
microbiota in drug discovery.  

Microbiota and T cells  
Numerous studies have been conducted on the 

crosstalk between the gut microbiota and immune 
cells. Commensal microbiota affects the function, 
development, and differentiation of T cells to 
maintain host immune homeostasis. 

A recent report that the microbiome acts as an 
antigen for T cells, specific microbes, such as 
segmented filamentous bacteria (SFB), contribute to 
the development of microbiota-specific T cells in the 
thymus [25]. T cells mainly regulate adaptive immune 
responses and can be divided into CD4+ T cells and 
CD8+ T cells. Specific commensal microbiota induces 
Th cell polarization and cytotoxic CD8+ T cell activity. 
In addition, unconventional T cells including natural 
killer T (NKT), γδ T, and mucosal-associated invariant 
T (MAIT) cells recognize microbe groups based on 
their microbe-derived metabolites.  

CD4+ T cells 
CD4+ T cells differentiate into various Th 

lineages with different effector functions. Several 
studies have demonstrated the role of the microbiome 
in Th cell differentiation and homeostasis. Klebsiella 
(K.) genera, such as K. aeromobilis and K. pneumoniae, 
induce Th1 cell responses in the gut (Fig. 1). 
Colonized Klebsiella in GF mouse intestines enhances 
Th1 cell proliferation, leading to Th1 cell 
augmentation in the intestine [26]. Probiotic bacteria 
have also been shown to modulate Th1 cell activity. 
Representative probiotic Lactobacillus strains are 

closely related to Th1 cells. Lactobacillus (L.) plantarum 
[27, 28] and L. salivarius [29] enhanced the production 
of Th1 cytokines, tumor necrosis factor alpha (TNFα), 
and interferon gamma (IFNγ). Lactobacillus strains 
isolated from fermented foods also upregulated TNFα 
secretion via macrophage activation, simultaneously, 
the amount of the Th2 cytokine interleukin (IL)-4 
decreased [30]. Based on these data, the gut 
microbiota could be involved in both Th1 and Th2 cell 
activities, and other Lactobacillus studies support this 
hypothesis [28, 31]. Mazmanian et al. reported that GF 
mice appeared more biased toward Th2 cell responses 
than Th1 cell. However, colonization of GF mice with 
polysaccharides (PSA) produced by Bacteroides (B.) 
fragilis corrected the imbalance by skewing Th2 cell to 
Th1 cell, resulting in decreased IL-4 and increased 
IFNγ production [8]. This indicated that the 
microbiota could concurrently affect Th1 and Th2 
cells. Klebsiella-induced Th1 cell differentiation is 
mediated by basic leucine zipper ATF-like 
transcription factor 3 (Batf3)-dependent dendritic cells 
(DCs) and TLR signaling pathway with IL-18 
signaling [26]. Under homeostatic control, 
Klebsiella-specific Th1 cells can be regulated without 
induction of severe gut inflammation. Once Klebsiella 
are dominant during dysbiosis, severe gut 
inflammation can be elicited following induction of 
Th1 cell differentiation. Indeed, enrichment of 
Klebsiella strains in the fecal of IBD patients than 
healthy controls has been reported [32]. 

Th2 cell secreting IL-4, IL-5, and IL-13 significant 
role in humoral immunity and defense against 
helminth infections and contribute to chronic 
inflammatory diseases, such as asthma and allergy 
[33]. Lactobacillus strains and B. fragilis were found to 
inhibit Th2 activity by positively influencing Th1 
activity [8, 28, 30, 31] (Fig. 1). The influence of the 
microbiota on Th2 activity appears during the IBD 
phase. Bamias et al. reported that SAMP1/YitFc 
mouse models of Crohn’s disease (CD) -like ileitis 
indicated that commensal bacteria induced Th2 
response characteristic of the chronic phase of 
SAMP1/YitFc ileitis, and symptoms also exacerbated 
[34]. Studies have shown that Lachnospiraceae strains 
are Th2 inhibiting microbes. Commensal A4 bacteria, 
a member of the Lachnospiraceae family, induce 
transforming growth factor-beta (TGF-β) production 
from DCs, which results in the inhibition of Th2 cell 
differentiation and activity [35].  

Th17 cells produce IL-17, a potent proinflam-
matory cytokine that causes tissue damage and is 
involved in the pathogenesis of inflammatory and 
autoimmune diseases [36]. Also, Th17 cells are absent 
in GF mice and are inducible upon microbial 
colonization [12] Studies have reported that SFB and 
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gram-positive bacteria induce Th17 cell differentiation 
(Fig. 1). Atarashi et al. reported that SFB or 
commensal bacteria-derived ATP activates a specific 
subset of lamina propria cells, and promotes inducing 
Th17 cell differentiation [37, 38]. In addition, Ivanov et 
al. reported that SPF mouse treatment with 
vancomycin, a gram-positive bacterial antibiotic, 
reduced the frequency of Th17 cells in the small 
intestine, implicating specific bacteria in Th17 cell 
differentiation [39]. According to Koji and Ivanov, 
Th17 cell differentiation is determined by gut 
microbes. Subsequent studies revealed that SFB or 
‘Candidatus Arthromitus’ is a gram-positive bacterium 
that promotes Th17 cell differentiation and secretion 
of several cytokines, such as IL-17 and IL-22 secretions 
[37, 40-42]. Also, Prevotella is another bacterium 
responsible for robust Th17 cell and cytokine secretion 
in the mouse colon [43]. Hang et al. reported that a 
microbial-produced secondary bile acid negatively 
affected Th17 cell differentiation. Among 30 different 
primary and secondary bile acids, 3-oxolithocholic 
acid blocked Th17 transcription factor RORγt, and 
Th17 cell differentiation was reduced in SPF mice [44]. 
Although how intestinal Th17 differentiation is 
induced by specific bacteria was fully undefined, 
many reports have clearly shown that the microbiome 
directly and indirectly contributes to Th17 cell 

differentiation and function. Therefore, Th17 
differentiation by the microbiota colonization is 
linked across diverse autoimmune diseases, such as 
RA, multiple sclerosis (MS) and IBD, discussed in 
more detail in the ‘Autoimmune diseases’ section. 

Treg cells play a crucial role in preventing 
autoimmune diseases through the modulation of 
immune responses, maintaining immune homeo-
stasis, and providing immune tolerance to both self 
and non-self-innocuous antigens [45]. B. fragilis is a 
well-known microbe capable of robust Treg cell 
populations by producing PSA. This microbial 
product leads to the development of Foxp3+ Treg cells 
with IL-10 production [46] (Fig. 1). Bifidobacterium 
strains also affect Treg cells, and it was confirmed that 
Bifidobacterium (Bi.) infantis and Bi. bifidum act to 
promote Treg cell generation [47, 48]. Lactobacillus 
strains are involved in Treg cell differentiation and 
activity, and Lacticaseibacillus casei induces Treg cell 
development and IL-10 secretion [49]. Forsythe et al. 
reported that L. reuteri attenuated allergic airway 
responses in BALB/c mice [50], and that this microbe 
promotes Foxp3 expression [51]. Thus, L. reuteri, 
affects Treg cell development and the severity of 
autoimmune diseases. L. acidophilus strain L-92 (L-92) 
showed similar effects in BALB/c mice. Under 
allergic contact dermatitis (ACD) conditions, oral 

 

 
Figure 1. Microbiota and CD4+ T cells. Microbiota mediates T cell differentiation in homeostatic and pathogenic conditions. Klebsiella activates T helper (Th) 1 cell in the 
intestinal via antigen presenting cells (APCs) to secrete IFNγ and TNFα. Lactobacillus activates Th1 cells but inhibits Th2 cells. Symbiotic A4 bacteria of the Lachnospiraceae family 
inhibit the production of IL-4 secreted by Th2 cells by APCs. Th17 cells are activated by Prevotella, gram-positive bacteria, and SFB, secreting IL-17 and causing inflammation. 
Bacteroides fragilis (B. fragilis) produces PSA, which activates regulatory T (Treg) cells. Bifidobacterium also activates Treg cells, which relieve inflammation by inhibiting or balancing 
Th1, Th2, and Th17 cells. * PSA: Polysaccharide A, a capsular carbohydrate from the commensal gut bacteria B. fragilis * Batf3: basic leucine zipper ATF-like transcription factor 
3 
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treatment with L-92 resulted in increased Foxp3, 
IL-10, and TGF-β expression in mice. They concluded 
that L-92 mediates ACD by enhancing Treg 
production and Th1 and Th2 responses [52]. Another 
Lactobacillus strain, L. murinus, has been shown to 
regulates RORγt+ Treg cells in the small intestine, 
which attenuates lung inflammation associated with 
Mycobacterium tuberculosis infection [53]. Microbial 
bile acid metabolites are involved in Treg cell 
differentiation and homeostasis. Song et al. observed 
that SPF mice fed a nutrient-rich diet produced more 
primary bile acids than GF mice, and this affected the 
restoration of RORγt+ Treg and Foxp3+ Treg cells [54]. 
In contrast, lithocholic acid, a secondary bile acid 
synthesized by bacteria, isoallolithocholic acid, 
inhibits Treg cell differentiation [44]. Zhang et al. 
reported that treatment with the penicillin antibiotic, 
ampicillin, reduced Treg cell proliferation and 
deregulated the Th1 response to bacterial infection. It 
can be seen that dysbiosis by antibiotics affects Treg 
cell production [55]. Likewise, microbiota can be 
altered by various factors, and this change also affects 
Treg cell generation and activities. Although the 
mechanism of intestinal Treg cell differentiation by 
specific commensal bacteria was not clearly defined, 
intestinal Treg cell colonization is clearly connected to 
specific bacteria and autoimmune diseases, for 
example, decreased abundance of Clostridia strains in 
RA and ameliorative effect of B. fragilis in IBD, 
discussed in more detail in the ‘Autoimmune 
diseases’ section. 

CD8+ T cells 
CD8+ T cells are critical for immune defense 

against intracellular pathogens, including viruses and 
bacteria, and for tumor surveillance [56]. Sivan et al. 
showed that probiotic species (Bifidobacteria) could 
determine the anti-tumor efficacy of CD8+ T cells [57] 
(Fig. 2). Vétizou et al. showed that particular microbes 
can influence cytotoxic T lymphocyte antigen-4 
(CTLA-4) blockage for cancer immunotherapy. They 
found that B. fragilis, B. thetaiotaomicron, and 
Burkholderiales were the major microbes that restored 
the anti-tumor efficacy of αCTLA-4 treatment [58]. 
Recent studies have demonstrated that microbial 
byproducts mediate CD8+ T cell function. Butyrate 
and propionate, two major SCFAs, inhibit CD8+ T cell 
activation by controlling IL-12 production by antigen 
presenting cell (APC) [59]. Another study confirmed 
that butyrate directly increases CD8 T cell activity by 
upregulating IFNγ and granzyme B expression [60]. 
Luu et al. demonstrated that Megasphaera (M.) 
massiliensis produced pentanoate promotes effector 
CD8 T cells activity. In the presence of M. massiliensis, 
they detected higher IFNγ and TNFα expression, and 

this positively influenced the efficacy of adoptive T 
cell therapy [61] (Fig. 2). As a result, Microbiota- 
derived SCFAs modulate CD8 T cell responses during 
cancer immunotherapy. In contrast, Yang et al. 
discovered that butyrate derived from Lachnospiraceae 
species inhibited IFNγ secreting CD8 T cells. They 
elucidated that butyrate restrained the stimulator of 
the IFN gene (STING) activation in DCs, which is 
associated with CD8 T cell responses, resulting in 
lower radiotherapy efficacy [62]. Induction of 
IFNγ+CD8 T cells may be associated to specific 
bacterial strains-derived metabolites, such as 
mevalonate, dimethylglycine [63] and SCFAs [64], 
which enter circulation and induce systemic 
activation of CD8 T cells (Fig. 2). Thus, the microbiota 
can modulate CD8 T cell function and immuno-
therapy efficacy.  

Unconventional T cell subsets 

Natural Killer T cells 
CD1d-restricted NKT cells regulate the broad 

range of immune responses between the innate and 
adaptive immune systems. They have the capacity to 
kill target cells and modulate immune response- 
secreting cytokines [65, 66]. Several studies have 
revealed that commensal microbiota regulate NKT 
cells homeostasis. Sphingomonas are gram-negative 
bacteria that are mainly found in the natural 
environment and are representative NKT cell 
stimulators. Since glycosphingolipids and glycosyl-
ceramides from Sphingomonas act as microbial 
antigens, they stimulate NKT cell activation and IFNγ 
secretion [67, 68] (Fig. 3). In the immune cells of GF 
mice, a lower frequency of iNKT cells was detected 
than that in SPF mice, but intragastric administration 
of Sphingomonas increased iNKT cell frequency [69]. 
Therefore, Sphingomonas exposure affects NKT-cell- 
modulated diseases. Olszak et al. found that 
commensal microbiota reduced mucosal iNKT cell 
accumulation. They observed a higher frequency and 
number of colon iNKT cells in GF mice than in that for 
SPF mice, implicating IBD and allergic asthma 
morbidity [70]. Sphingolipid produced by B. fragilis 
regulates homeostasis with suppression of NKT cell 
proliferation in neonatal mice [71], indicating that 
NKT cell-microbiota networking is critical in 
maintaining of balance between protective responses 
and excessive inflammation. CXCL16 expression is 
mediated by microbial bile acids, which affect hepatic 
NKT cell accumulation. Clostridium species modified 
bile acids promote the CXCL16 level in liver 
sinusoidal endothelial cells. Moreover, recruiting 
hepatic NKT cells has shown impressive anti-tumor 
responses against EL4 lymphoma tumors [72]. 
According to these findings, gut microbiota 
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significantly affects NKT cells and mediates several 
diseases. 

γδ T cells 
γδ T cells are a small population of T cells that 

promote inflammatory responses and are particularly 
important for initial inflammatory and immune 
responses [69]. Similar to other T cell subsets, γδ T 
cells are also influenced by the microbiome. Under 
SPF conditions, microbes activate interleukin-1 
receptor 1 (IL-1R1) expression on γδ T cells in the 
small intestine, thereby maintaining IL-17 production 
[73]. Li et al. showed that IL-17A-producing γδ T (γδ 
T17) cell homeostasis is mediated by the commensal 
microbiota in the liver. Commensal microbiota affects 
γδ T17 cell activation and IL-17 cytokine secretion, 
which accelerates non-alcoholic fatty liver disease 
(NAFLD) progression [74]. Microbial byproducts also 
downregulated γδ T17 cell activity. Vancomycin 
treatment increased γδ T17 cells in conventional mice, 
indicating that gram-positive bacteria repress γδ T cell 

function. Dupraz et al. confirmed that propionate is 
the main factor modulating IL-17 secretion by γδ T 
cells [75] (Fig. 3). Another study showed that 
commensal microbiota is associated with γδ T cell 
expansion in the mouse lung, which can promote 
particulate matter-induced neutrophilia [76]. As 
previously reported, γδ T cells that recognize lipids 
and phosphoantigens, as intermediates produced by 
microbiota via metabolic pathway, undergo various 
immune responses and epigenetic modification. This 
modification is indirectly induced through 
microbiota-epithelial cell interaction [77]. Although 
the interrelationship between intestinal γδ T cell and 
specific commensal bacteria was not clearly defined, 
localization and motility of γδ T cells are 
microbiota-dependently regulated in the epithelial 
layer [78] which is critical in protective 
immunosurveillance of the gut surface, indicating that 
commensal microbiota play an important role in the 
protective function of γδ T cells in diseases. 

 

 
Figure 2. Microbiota and CD8+ T cells. Bifidobacterium and Mobilicoccus massiliensis (M. massiliensis)-derived pentanoate activates CD8+ T cells and increases the secretion of 
IFNγ and TNFα, thereby enhancing the anti-tumor CD8+ T cell response. Lachnospiraceae species-derived butyrate and propionate, the two major short-chain fatty acids (SCFAs), 
decrease APC-induced IL-12 production, thereby inhibiting CD8+ T cell activation and IFNγ secretion. In addition, butyrate directly activates cytotoxic T lymphocyte (CTL) cells 
via other pathways to upregulate the secretion of IFNγ and granzyme B (GzmB). Microbiota-derived SCFAs mediate anti-tumor responses by modulating CD8 T cell responses. 
SCFAs such as mevalonate and dimethylglycine increase IFNγ+CD8 T cells in the intestinal. *TNF: tumor necrosis factor 
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Figure 3. Microbiota and unconventional T cells. Modulation of unconventional T cell subset functions by microbe-derived metabolites and their own microbiota. 
Glycosphingolipids and glycosylceramides from Sphingomonas act as microbial antigens to activate NKT cells and secrete IFNγ (left). Gut microbiota represses IL-17 production 
by cecal γδ  T cells. Gram-positive bacteria and short-chain fatty acids (SCFAs; ex. propionate) repress IL-17 producing γδ  T cells (middle). Various bacterial antigens 
(ex.5-OP-RU) presented by APC are presented to MR1 (ligand), bind to the TCR of MAIT cells, activate MAIT cells, and secrete cytokines such as TNF, IFNγ, and IL17A (right). 
TCR in MAIT cells interacts with MR-1 in APC and is semi-constant. * TCR: T cell receptor; HDAC: Histone deacetylases; TLR: Toll Like Receptors; MR: MHC class I related-1 
molecule; 5-OP-RU: MAIT cell ligand 

 

Mucosal-associated invariant T cells 
MAIT cells are MHC Ib-restricted innate-like 

lymphocytes and play a critical role in mucosal 
homeostasis. Interest in MAIT cell-microbiota 
interaction has increased since some studies have 
reported that MAIT cells can recognize bacteria and 
protect against microbial infection [79, 80]. Koay et al. 
showed that the number of MAIT cells in GF mice was 
noticeably lower than that in SPF mice. They found 
that the MAIT cell development in the thymus is 
impaired as the microbiome does not exist in GF mice 
[81]. Subsequent studies corroborated the significance 
of the microbiome on MAIT cell development and 
generation [72, 82]. Moreover, MAIT cell has an 
anti-microbial function, and some microbiome 
infections trigger MAIT cell function enhancement. 
For example, Francisella tularensis [80], Mycobacteroides 
abscessus, Escherichia (E.) coli [83], Salmonella 
typhimurium [84], and Lactococcus lactis [85] act as 
MAIT cell activators. Activation of MAIT cells 
recognizes various bacterial antigens (eg, 5-OP-RU) 
presented by MHC class 1b protein MR1 and secretes 
cytokines such as TNF, IFNγ, and IL-17A (Fig. 3). 
However, the use of mouse models for MAIT cell 
studies is much more limited than the use of human 
MAIT cells. SPF and GF mice lack microbiome 
complexity and richness, and this microbial 

environment is not sufficient to develop mouse 
models for MAIT cell studies. Indeed, MAIT cells are 
found in human blood and peripheral tissues, 
including the liver and gut lamina propria [86, 87], 
and their frequency is higher than that in mice [88]. 
Furthermore, microbiome comparisons between 
laboratory mice and humans are strikingly different 
[89]; these factors may influence several aspects of 
host immune system and diseases. 

T cell-mediated inflammatory disease 
and microbiota 

 The etiology of autoimmune diseases can mainly 
be explained by genetic mutations and environmental 
factors [90, 91]. In particular, individual genetic 
susceptibility to diseases and subsequent environ-
mental triggers cause changes in the composition of 
symbiotic microorganisms that interact with the 
immune system. Recent studies have highlighted the 
importance of microorganisms in autoimmune 
diseases such as RA [92], experimental autoimmune 
encephalomyelitis (EAE) [93], asthma, and IBD [94]. 
In this context, several reports have identified that 
intestinal microbes and their metabolites regulate T 
cell differentiation and function [63, 95]. In addition, 
disease progression and severity are affected by the 
composition of an individual’s microbiota [94, 96] 
(Fig. 4). 
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Figure 4. Alteration of gut microbiota in autoimmune disease. Altered abundance of the gut microbiota in patients with Rheumatoid arthritis (RA), Multiple sclerosis 
(MS), and Inflammatory bowel disease (IBD) is indicated. * Red: high; blue: low; number: reference 

 

Autoimmune diseases 

Rheumatoid arthritis  
RA is a systemic chronic inflammatory disease 

that mainly affects the joints and is known to be an 
autoimmune disease accompanied by bone and 
cartilage destruction. Although the pathogenesis 
remains unclear, the microbiome, along with genetic 
and environmental factors, is also involved in the 
pathogenesis of RA. Numerous studies have 
investigated the gut microbiome abundance in 
patients with RA (Fig. 4). Among them, the 
abundance of Firmicutes, Ruminococcaceae, Bacteroides, 
Prevotella, Lactobacillus group, and Faecalibacterium (F.) 
prausnitzii increased, whereas that of Rikenellaceae, 
Alloprevotella, Bifidobacterium, Clostridium (C.) cluster 
XIVa, Enterobacter, Enterococcus, Fusicatenibacter, 
Megamonas, Odoribacter, and C. leptum decreased 
[97-105]. Scher et al. found that in the gut of patients 
with recent-onset RA, an increased abundance of 
Prevotella (P.) copri and Bacteroides and decreased 
abundance of C. leptum was observed [98]. 

In the RA mouse model, collagen-induced 
arthritis (CIA), the Lactobacillaceae lineage was 
significantly more abundant. The Lactobacillus genus 
was significantly more abundant after collagen- 

mediated induction in CIA-sensitive mice than in 
CIA-resistant mice [92, 106]. Ivanov et al. found that 
Candidatus Arthromitus or SFB colonization induces 
Th17 cells, rapid onset autoimmune arthritis, and 
exacerbates CIA [41]. Conversely, commensal 
bacteria-derived butyrate (C. cluster XIVa, including 
Lachnospiraceae, which are major butyrate 
producers) suppresses the development or improves 
symptoms of autoimmune arthritis [107]. Numerous 
studies have shown that SFB and prevotella, which 
are known to promote the secretion of Th17 cells and 
inflammatory cytokines, are greatly increased in 
autoimmune RA. Thus, the differential abundance of 
the gut microbiota suggests that it may orchestrate the 
development and symptoms of autoimmune arthritis 
through a Th cell-mediated pathway. 

Multiple sclerosis  
MS is an autoimmune and chronic inflammatory 

demyelinating disease of the central nervous system 
(CNS) caused by proinflammatory Th1 and Th17 cells 
[108]. Although Th17 cells have been reported to have 
a significant impact on MS pathogenesis, it has been 
suggested that microbiota alterations may also be 
factors in MS initiation and severity [99, 109, 110]. 
According to Koji and Ivanov, recruitment and 
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activation of myelin-specific CD4+ T cells from 
immune processes depends on the availability of the 
target commensal gut microbiota [109]. Lee et al. 
suggested that GF mice harboring only SFB develop 
EAE, as colonization with SFB induces Th17 (IL-17) in 
the CNS, and that gut bacteria may influence 
neuroinflammation [111]. Additionally, SFB affects 
the disease by increasing cytokine production by Th1 
(IFNγ) and Th17 (IL-17) cells in EAE (mouse model of 
MS) [111-113]. In patients with MS, Akkermansia (Ak.) 
muciniphila and Acinetobacter (Ac.) calcoaceticus both 
increased (induced proinflammatory responses), but 
Parabacteroides distasonis was reduced (stimulated 
anti-inflammatory IL-10–expressing) [99]. In addition, 
the abundance of Bacteroidetes, Lachnospiraceae, 
Rikenellaceae, Eisenbergiella, Escherichia-Shigella, F. 
prausnitzii, and Flavobacterium increased in patients 
with MS, whereas Firmicutes, Ruminococcaceae, 
Bacteroides, Bifidobacterium, Clostridium, L. salivarius, L. 
iners, L. ruminis, Megamonas, Odoribacter, Parabacter-
oides, and Prevotella decreased [99, 114-128] (Fig. 4). 
These results are similar to those of EAE. EAE onset 
and severity showed differences based on the 
composition of the microbiota community. At the 
onset of EAE, Acetatifactor (A.) muris, C. leptum, 
Turicibacter sanguinis, C. cluster XlVa, and Erysipelotri-
chaceae families increased, whereas Lactobacillus 
decreased [129]. In addition, Bifidobacterium, Prevotella, 
and Lactobacillus were negatively correlated with EAE 
severity, whereas Anaeroplasma, Rikenellaceae, and 
Clostridium were positively correlated with disease 
severity [119, 130]. Oral administration of L. murinus 
and L. reuteri [119, 131] is effective in reducing 
Th1/Th17 cells and related cytokines IFNγ/IL-17 and 
in alleviating and preventing EAE symptoms [109, 
110, 132]. Altogether, data from MS patients and the 
murine EAE model found the composition of 
microbiota correlated with disease onset and clinical 
severity. Since the immune responses are activated or 
suppressed depending on the type of gut bacteria, the 
immunoregulatory effect on MS patients can be 
applied differently. Therefore, the diverse gut 
microbiota is expected to provide new preventive and 
therapeutic approaches targeting autoimmune 
response in patients with MS. 

Inflammatory bowel disease 
IBD is an autoimmune disease that occurs in the 

digestive tract owing to chronic inflammation and is 
divided into CD and ulcerative colitis (UC) [133]. 
Chronic inflammation leads to the production of 
reactive oxygen species (ROS), which impair DNA. It 
also controls proinflammatory mediators that 
promote cellular survival and growth. Consequently, 
patients with IBD have an increased risk of 

developing CRC [94]. In IBD patients, Enterobacteri-
aceae, Muribaculaceae, and A. muris, which are 
commensal proinflammatory bacterial taxa, were 
overgrown, and the Firmicutes family, especially the 
Clostridia class and Roseburia, were decreased [134]. 
Numerous studies have shown that the intestinal 
microbial abundance in IBD patients of Eisenbergiella, 
Escherichia-Shigella, F. prausnitzii, Parabacteroides, Ac. 
calcoaceticus, and Ak. muciniphila were higher, whereas 
Bacteroidetes, Rikenellaceae, Ruminococcaceae, C. cluster 
XIVa, and Flavovobacterium showed low abundance 
[134-144] (Fig. 4). A higher frequency of cells was 
observed in the gut microbiome of the IBD mouse 
model compared to mice colonized with healthy 
donor microbiotas [145]. In addition, SPF mice 
develop colitis with conventional microbiota but not 
under GF conditions [146]. The administration of 
Clostridium has been reported to prevent 
inflammation by increasing induced iTreg cells that 
secrete TGF-β and IL-10 [10]. In addition, Lactobacillus 
(especially L. murinus) induces Treg cell expansion by 
secreting IL-10 and TGF-β in colonic DCs and 
macrophages, and B. fragilis also relieves 
inflammation by inducing Treg cells [133, 147, 148]. 
IBD is influenced by the composition of the gut 
microbiota; therapeutic supplementation with 
probiotics, prebiotics, synbiotics, and FMT is also 
being investigated to suppress inflammation 
[149-151]. Therefore, it is expected that specific 
bacterial strains such as Clostridium and B. fragilis that 
induce Treg cells in the intestinal environment can be 
a novel treatment targeting IBD patients with 
intestinal bacterial dysbiosis. 

Allergic airway inflammation (AAI) and 
Asthma 

Asthma is a chronic airway inflammation 
disease characterized by airway hyper-responsiveness 
(AHR), airflow obstruction, airway inflammation, and 
airway remodeling [152]. In addition, eosinophil 
infiltration and higher concentrations of Th2 
cytokines (IL-4, IL-5, and IL-13) and immunoglobulin 
E (IgE) were detected in the serum and 
bronchoalveolar lavage fluid of patients with asthma 
[152, 153]. According to current research, maternal or 
pediatric intestinal microbial clusters affect the 
immune system and are involved in allergic diseases, 
such as asthma. Herbst et al. observed that the total 
number of infiltrating lymphocytes and eosinophils 
was elevated in the airways of allergic GF mice 
compared to that in control SPF mice [154]. Oral 
treatment with live L. reuteri in a mouse model of 
allergic airway inflammation could attenuate the 
symptoms of an asthmatic response by inducing Treg 
cell production and increasing IL-10 secretion. This 



Int. J. Biol. Sci. 2023, Vol. 19 
 

 
https://www.ijbs.com 

1186 

microbe also reduces the secretion of inflammatory 
cytokines, such as monocyte chemoattractant protein1 
(MCP1), IL-5, and IL-13 including T lymphocytes and 
macrophages [50]. In addition, robust L. murinus Treg 
cells in the mesenteric lymph nodes and lung and 
decreased proinflammatory cytokine secretion are 
related to AAI severity. These data demonstrate that 
AAI and asthma can also be attenuated by 
strain-specific probiotics, such as in patients with RA 
and MS. Antibiotics are known to induce changes in 
the intestinal microbiota, and among them, 
azithromycin is reported to alter the gut microbiome 
and attenuate airway inflammation in allergic asthma 
[155]. In summary, altered gut microbiome may 
influence the onset and severity of asthma or disease 
with AAI. In addition, it will provide potential new 
biomarkers and suggest the possibility of more 
targeted therapies for autoimmune diseases by 
regulating the gut bacteria strains. 

Cancers and microbiota 
Interactions between the gut microbiome and 

immune system are thought to influence cancer 
immune surveillance. The human immune system 
plays an important role in tumor suppression, as 
tumor cells express immune checkpoints, such as 
programmed death (PD) 1/PD-ligand 1 and CTLA-4, 
to avoid the immune system response and suppress 
anti-tumor immunity [156, 157]. In addition, PD-1 and 
CTLA-4 expression increased by CD8+ tumor- 
infiltrating T lymphocytes in patients with pancreatic 
ductal adenocarcinoma (PDAC) [158, 159]. Blocked 
CTLA-4 induces a dramatic decrease in Bacteroidales 
and Burkholderiales, with a relative increase in 
Clostridiales [58]. Several studies have reported that 
PD-1 blockade in cancer patients is associated with 
gut microbiota, including Akkermansia, Bifidobacterium, 
and Faecalibacterium [57, 160-162]. In addition, cancers, 
such as CRC and PDAC, may be caused by dysbiosis 
of the gut microbiome. Numerous studies have 
analyzed and compared the gut microbiome 
abundance of different cancer patients and healthy 
donors. When the gut microbiota was analyzed in 
patients with various types of cancers such as PDAC, 
CRC, breast cancer, ovarian cancer, and cervical 
cancer, Proteobacteria, Firmicutes phyla and 
Actinobacteria abundance was very high compared to 
that in a healthy donor [163-166]. Conversely, 
Bacteroidetes are more abundant in healthy donors 
than in cancer patients with PDAC, CRC, ovarian 
cancer, or breast cancer [167]. Dysbiosis in patients 
with CRC causes increased Ak. muciniphila, E. coli, P. 
copri, Alistipes putredinis, Ruminococcus torques, and 
Prevotella [94, 168]. Microbiota-produced SCFA, such 
as acetate, butyrate, and propionate, have great effects 

on disease prevention and health promotion. Butyrate 
is also known to play an important role in cancer 
prevention [169]. In particular, fecal samples of 
patients with PDAC are depleted in the phylum 
Firmicutes, which includes beneficial bacteria 
including F. prausnitzii, Eubacterium rectale, and 
Roseburia intestinalis [170]. Butyrate secreted by 
Firmicutes suppresses histone deacetylase activity and 
downregulates proinflammatory cytokines in 
intestinal epithelial cells and immune cells to alleviate 
CRC symptoms [171, 172]. Zhang et al. reported that 
as a result of analyzing the intestinal microflora in 
lung cancer, lower levels of Kluyvera, Escherichia- 
Shigella, Dialister, Faecalibacterium, and Enterobacter 
were found in patients with lung cancer, whereas 
Veillonella, Fusobacterium, and Bacteroides were 
significantly higher than in healthy individuals [173]. 
In breast cancer patients, the anti-tumor effect was 
higher in patients with a high abundance of specific 
gut microbiomes, such as Ak. muciniphila, Bi. longem, 
Collinsella aerofaciens, and F. prausnitizi [174]. Cheng et 
al. reported that the gut microbiota in patients with 
ovarian cancer can negatively regulate estrogen levels 
[175]. Taken together, comparing the abundance of 
gut microbiota could be a useful biomarker for certain 
cancer patients and that the gut microbiome 
influences the occurrence, development, treatment, 
and prognosis of cancers; it will also provide new 
strategies for the prevention, diagnosis, and treatment 
of cancers. 

Study of wildling or humanized mice by 
fecal microbiota transfer and its necessity 

As a representative experimental animal, the 
mouse is essential for immunologists and biomedical 
research because it has more than 90% genetic 
similarity to humans [176] as well as advantages such 
as its small size, low cost, and ease of handling. SPF 
and GF mice with a limited microbiome managed in 
an ultra-hygienic system to prevent pathogen 
invasion in the 1960s [177] were used. Ironically, the 
limited microbiota in laboratory mice is a growing 
concern in human immunology and clinical research. 
Unlike laboratory mice, humans have been exposed to 
external pathogens from birth, which naturally leads 
to a higher microbiota complexity and abundance in 
humans than in laboratory mice [89]. Furthermore, in 
terms of the immune system, the microbial challenge 
from natural habitats matures the human immune 
system, whereas laboratory mice have an immature 
immune system similar to that of neonates. According 
to a study by Beura et al., laboratory mice lacked 
memory CD8+ T cell subsets that experienced 
protection against pathogen invasion [178]. This 
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difference has limited the translational research value 
from laboratory mice to humans. Especially in the 
drug development and testing stages, preclinical 
testing using laboratory mouse model does not 
always show the same value as clinical testing in 
humans. The failure rate of translational tests is 
approximately 90%, mainly because drug candidate 
toxicity cannot be predicted at the clinical stage [179]. 
Therefore, to increase the success rate of clinical trials, 
preclinical trials must be reinforced. Therefore, 
immunologists have proposed the use of wild mice. 
As wild mice live in natural habitats similar to 
humans, using wild mice could provide the same 
environmental conditions as laboratory mice in terms 
of gut microbiota and immune system aspects. Recent 
studies have supported the importance of 
investigating wild mice. Rosshart et al. captured wild 
mice from Maryland, USA, and compared the gut 
microbiota with SPF mice. Interestingly, the gut 
microbiota composition differed between the groups. 
Relatively higher levels of Proteobacteria and 
Bacteroidetes were detected in wild mice, whereas 
Firmicutes levels were lower than in laboratory mice 
[22]. Ericsson et al. also consistently demonstrated 
that the wild mice microbiota differed from laboratory 
mice [180]. In addition, wild mice showed distinct 
immune system differences compared with laboratory 
mice. Wild mice had higher proportions of effector 
and memory T cells and higher cytokine production 
[178, 181]. Therefore, utilizing the wild mice- 
microbiome that influences immunological properties 
could be an option to improve the value of preclinical 
findings. Recently, wild mouse-based studies have 
been conducted using various wild microbiota- 
transplantation methods. It has been reported that the 
rewilded laboratory mouse via wild microbiota 
colonization showed similar microbial community 
[13, 22] and immune system fitness [13, 178, 182-184] 
and enhanced disease resistance [22]. Additionally, 
mice implanted with human microbiota have been 
studied for decades to determine their roles in health 
and disease. Burz et al. reported that when microbiota 
from a patient with non-alcoholic fatty liver disease 
(NAFLD) and healthy individuals were transplanted 
into mice, they displayed a microbiome composition 
similar to that of a human donor. When a 
high-fructose, high-fat diet was administered to mice 
transplanted with intestinal microbes from patients 
with a fatty liver, NAFLD characteristics, including 
increased body weight, steatosis, and plasma 
cholesterol, were observed. These results suggest that 
gut bacteria play a role in the development of obesity 
and steatosis and that targeting the gut microbiota 
could be a preventive or therapeutic strategy for 
managing NAFLD [24]. Another study identified a 

group of gut microbes that either promoted or 
inhibited tumorigenesis after transplantation of fecal 
samples from patients with CRC into GF mice. Baxter 
et al. suggested that a better understanding of the gut 
microbiota could lead to the development of prebiotic 
or probiotic therapies to prevent or delay the 
development and progression of CRC [185]. Britton et 
al. suggested that the fecal microbiota of humans with 
IBD alters intestinal CD4+ T cell homeostasis in mice 
and induces more Th2 and Th17 cells. In addition, it 
has been reported that mice colonized with IBD 
microbiota in a colitis model suffer from more severe 
diseases [145]. Based on current studies, fecal transfer 
of microbiota can be utilized to alter the laboratory 
mouse microbiome community and immune fitness; 
this process can facilitate the prediction of human 
immune responses. Therefore, FMT models such as 
the wildling or humanized model by fecal transfer 
would enhance the reliability of preclinical tests by 
providing accurate data in drug efficacy tests (Fig. 5). 
This would lead to the holistic development of the 
pharmaceutical industry. 

Conclusion 
 This review discusses the relationship between 

gut microbiota and the immune system. In recent 
decades, significant advances have been made in 
immunology and microbiology using microbiota and 
germ-free animals and next-generation sequencing. 
Many such studies have revealed the correlation 
between gut microbiota and the immune system. 
Based on this, we have discussed the role of gut 
microbiome in activating T cells and the development 
and promotion of autoimmune diseases and various 
cancers. FMT mouse models of Human and wild mice 
are expected to increase the success rate of preclinical 
studies. Furthermore, it will be possible to overcome 
the limitations of using GF or SPF mice by gut 
microbiome research which will open new avenues 
for disease treatment and prevention based on the 
distribution of the gut microbiome. 
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Figure 5. The necessity for laboratory mouse expressing wild and human microbiome. SPF experimental mouse currently used a low success rate due to 
translational failure in the clinical stage despite success in preclinical tests (top). A humanized or wildling mouse model in which feces of the human and wild mouse are 
transplanted is predicted to show high translational test success rate in clinical trials after successful preclinical tests (bottom). 
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