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Abstract 

Pain, one of the most important problems in the field of medicine and public health, has great research 
significance. Opioids are still the main drugs to relieve pain now. However, its application is limited due to 
its obvious side effects. Therefore, it is urgent to develop new drugs to relieve pain. Multiple studies have 
found that IGF/IGF-1R pathway plays an important role in the occurrence and development of pain. The 
regulation of IGF/IGF-1R pathway has obvious effect on pain. This review summarized and discussed the 
therapeutic potential of IGF/IGF-1R signal pathway for pain. It also summarized that IGF/IGF-1R regulates 
pain by acting on neuronal excitability, neuroinflammation, glial cells, apoptosis, etc. However, its 
mechanisms of occurrence and development in pain still need further study in the future. In conclusion, 
although more deep researches are needed, these studies indicate that IGF/IGF-1R signal pathway is a 
promising therapeutic target for pain. 
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1. Introduction 
Pain is a complex biopsychosocial phenomenon, 

which is redefined as “an unpleasant sensory and 
emotional experience associated with, or resembling 
that associated with, actual or potential tissue 
damage” by the International Association for the 
Study of Pain (IASP) in 2020[1]. Pain is mainly 
divided into acute pain and chronic pain according to 
the time definition. Acute pain, mainly caused by 
surgery, influences early mobilization as a prereq-
uisite for improving recovery and reducing the risk of 
complications[2]. Acute severe pain increases the risk 
of transition to chronic postoperative pain[3, 4] as well 
as the occurrence of postoperative delirium[5]. 
Therefore, it is particularly important to control acute 
pain in time. While chronic pain, as one of the most 
common reasons adults seek medical care, has a 
prevalence rate between 11% and 40%, which 
seriously affects the quality of patients’ life[6]. It is 
estimated that 20.4% (50 million) of American adults 

suffer from chronic pain[6]. In addition to suffering 
from pain, chronic pain is also prone to comorbidity 
such as anxiety, depression and sleep disorders[7-10]. 
The economic cost of chronic pain is enormous. A 
report released by the Medical Research Institute in 
2010 estimated that chronic pain afflicts about one 
third of Americans, causing medical expenses and 
productivity losses of 560 to 635 billion dollars each 
year[11]. Therefore, pain, as one of the most important 
problems in the field of medicine and public health, 
has great research significance. To date, the 
mechanisms of pain have not been clearly studied, so 
it is urgent to understand the mechanisms of pain in 
order to conduct better treatment. 

Insulin-like growth factor (IGF), the primary 
effector of the growth hormone (GH) axis, is an 
anabolic hormone produced mainly in the liver. It can 
also be produced by local autocrine and paracrine, 
such as skeletal myogenic cells[12], ventricular 
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fibroblasts[13], glial cells[14]. It involves in regulating 
biological activities related to GH, such as insulin 
metabolism and cell proliferation, differentiation and 
apoptosis[15]. Existing studies have found that IGF 
plays an important role in various human diseases. 
Several studies show that IGF-1 is closely related to 
the metabolism of cancer[16-19]. The abnormal levels 
of IGF are associated with increased risk of 
diabetes[20-23] and cardiovascular disease[24-26]. 
Besides, clinical evidence and animal studies indicate 
the role of IGF/GH pathway involved in the process 
of longevity and aging[27-29]. More research found 
that IGF has nutritional and anti-apoptotic effects on 
neurons and muscle cells[30-33]. In addition, whether 
acute or chronic pain, IGF plays an important role in 
its occurrence and development[34, 35]. 

In this review, we emphasized the latest progress 
in understanding the mechanisms of IGF in acute and 
chronic pain, focusing on how IGF affects pain 
through changes in neuronal excitability, neuroinfla-
mmation, and glial cells. It clarifies the different roles 
of IGF in different pain types and different regions, 
and provides new ideas and targets for future pain 
treatment. 

2. The overview of IGF/IGF-1R pathway 
IGF system includes an ancient peptide family, 

which involves mammalian growth, development 
and metabolism, as well as cell processes, such as 
proliferation, survival, cell migration and differen-
tiation. IGF family includes three known ligands 
(IGF-I, IGF-2 and insulin), six characteristic insulin- 
like growth factor binding proteins (IGFBP-1-6) and 
cell surface receptors (IGF-1 receptor, insulin receptor 
and IGF-II mannose 6-phosphate receptor) that 
mediate ligand action[36-38]. IGF acts through 
circulation and local secretion[39]. These molecules 
constitute a complex autocrine/paracrine network to 
regulate cell proliferation, survival and differenti-
ation[39]. Among them, IGF-1 and IGF-2 are reported 
to be related to pain at present. IGF-1 is a single 
polypeptide chain consisting of 70 amino acids, which 
has a binding affinity to IGF-IR 100-fold higher than 
insulin. IGF-2 is composed of 180 amino acids. It also 
binds to IGF-IR with a binding affinity comparable to 
IGF-1[40, 41].  

IGF-1 and IGF-2 are mainly mediated by IGF 
receptor type 1 (IGF-1R) to regulate pain. IGF-1R was 
first proved to exist in 1974[42]. IGF-1R can be shown 
by SDS gel electrophoresis and consists of two α and 
two β chains linked together by disulfide bonds[40, 
43]. When expressed in the presence of monensin, an 
inhibitor of posttranslational processing, the IGF-1R 
was proved to be synthesized as a 180-kDa precursor, 
which is glycosylated, dimerized and proteolytically 

to produce the mature α2β2 receptors. The next key 
finding is that IGF-1R, like insulin receptor (IR), is a 
tyrosine kinase which is activated and autophos-
phorylated following IGF binding[44]. The IGF-1R has 
a similar structure to the insulin receptor. The insulin 
receptor (and related IGF-1R) is a covalent dimer 
transmembrane allosteric enzyme[45]. IGF-1R is a 
member of the transmembrane tyrosine kinase family, 
including IR and orphan insulin receptor related 
receptor (IRR). It binds IGF-1 with high affinity and 
starts the physiological response to the ligand in 
vivo[46]. IGF-1R also binds to IGF-2, plays a part in the 
mitogenic effect of this polypeptide during fetal 
development[47]. The extracellular α-subunit forms 
IGF-1 binding pockets, while the intracellular domain 
(amino acids 956–1256) of the membrane-spanning 
β-subunit contains a kinase domain[48, 49]. Once 
activation, the tyrosine kinase activity of IGF-1R 
results in a continuous phosphorylation event at 
residues Y1135, Y1131, and Y1136, producing confor-
mational changes in β subunits to create conforma-
tional changes occur in subunits, creating docking 
sites for downstream signal molecules and their 
phosphorylation[49]. The activation of IGF-1R 
triggers multiple signal cascades in a cell context 
dependent manner to regulate multiple cellular func-
tions from proliferation and survival to differentiation 
into specific cell lineages[39].  

3. The relationship between IGF/IGF-1R 
and pain 
3.1. The expression of IGF/IGF-1R in pain 
related regions 

Multiple evidence indicates that IGF/IGF-1R can 
be expressed in dorsal root ganglion (DRG)[50, 51], 
spinal dorsal horn[52, 53] and brain[54-56]. These 
areas are closely related to pain. Dai et al found that 
IGF-1 immunoreactive products showed strongly 
stained brown deposits in the cytoplasm of large, 
medium and small DRG neurons. In layer II of L3 and 
L6 spinal cord, IGF-1 immunoreactive products were 
found in the nuclei of some neurons and glial 
cells[52]. IGF-1 and its receptor are preferentially 
expressed in DRG neurons harvested from sciatic 
nerve axotomy and streptozotocin (STZ) induced 
painful neuropathy in diabetes[57]. Besides, Taka-
yama also reported that colocalization of IGF-1 in 
DRG is expressed in the neuronal bodies and fibers. 
IGF-1 is collocated with neuron, but not with satellite 
glial cell (SGC) of DRG in a rat disc herniation 
model[58]. However, single cell RNA (scRNA) 
sequencing and in situ hybridization analysis showed 
high expression of endogenous IGF-1 in non 
peptidergic neurons and SGC of DRG[59, 60]. IGF-1 
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expression in cerebral cortex and DRG was higher 
than that in sciatic nerve in mice[59, 60]. Besides, 
IGF-1R also widely expressed in hippocampus[61-63] 
and frontal cortex[64-66]. In summary, IGF/IGF-1R 
are widely expressed in sites closely related to pain 
(DRG, spinal cord and brain), so we reasonably 
speculate that they are closely related to the 
occurrence and development of pain. 

3.2. The role of IGF/IGF-1R in pain 

3.2.1. The IGF/IGF-1R pathway involved in aggravating 
acute pain 

IGF/IGF-1R pathway plays an important role in 
acute pain (Table 1). Local administration of IGF-1 
induces thermal and mechanical pain hypersensitivity 
in a dose-dependent manner, which is attenuated by 
inhibition of IGF-1R inhibitor picropodophyllin (PPP, 
50 μg)[34]. In addition, the author also found that after 
plantar incision, the level of IGF-1 in tissues, but not 
in plasma, increased significantly. IGF-1R inhibitor 
(PPP, 50 μg) successfully alleviated mechanical allo-
dynia, thermal hyperalgesia and spontaneous pain 
behavior observed after plantar incision[34]. Another 
study also showed that intraplantar recombinant 
IGF-1 (rIGF-1, 50 μg/kg) developed hyperalgesia 2 
hours later in mice. This IGF-1-induced hypersensi-
tivity response is attenuated by pretreatment with 
IGF-1R antagonists (JB1, 6 μg)[67]. Clinical experi-
ments also found that the serum IGF-2 level in 
patients with acute myofascial pain syndrome (MPS) 
was lower than that in healthy control group, with no 
gender difference, while the IGF-1 level in each group 
had no difference[68]. Above all, the dysregulation of 
IGF/IGF-1R can promote the occurrence of a variety 
of acute pain, and inhibition of their expression can 
relieve acute pain. 

3.2.2. The IGF/IGF-1R pathway involved in relieving 
acute pain 

However, Takemura et al found that IGF-1 
expression increased in paw, but did not increase in 
DRG after plantar incision. Plantar injection of IGF-1 
increased the expression of G-protein-coupled 
receptor kinase 2 (GRK2) in ipsilateral DRG, which 
can relive the mechanical hyperalgesia. The 
application of IGF-1R inhibitor (250 µg/kg and 500 
µg/kg) prevented the induction of GRK2 and the 
regression of hyperalgesia after plantar incision[69] 
(Table 2). The reason why this study has different 
results from the above studies that Miura conducted 
may be closely related to the different observation 
time. This experiment mainly focuses on the state 7 
days after the incision pain, while the above research 
focuses on the pain within 3 days after the incision.  

3.2.3. The IGF/IGF-1R pathway involved in aggravating 
chronic pain 

There are also research findings reported that the 
IGF/IGF-1R signaling pathway can cause hyperal-
gesia in chronic pain (Table 1). IGF-1 increases T-type 
channel currents through the IGF-1R that is coupled 
with a G protein-dependent protein kinase C-α 
(PKC-α) pathway, thereby increasing the excitability 
and sensitivity of DRG neurons to induce pain[70]. 
Under complete Freund’s adjuvant (CFA) induced 
chronic inflammatory pain conditions, T-type Cav3.2 
channel at least partially mediates the pain promotion 
through IGF-1/IGF-1R pathway in DRG[71]. Besides, 
IGF-1 activates IGF-1R to induce neuronal hyperexci-
tability in small trigeminal ganglion (TG) neurons, 
decreasing A-type K+ currents (IA) to enhance the 
sensitivity of pain[72].  

 

Table 1. The pain model, expression, localization of the IGF/IGF-1R aggravating the pain.  

IGF/IGF-1R Pain model Expression Localization Reference 
IGF/IGF-1R DRG neuron/CFA DRG ↑ Neuron [70] 
IGF-1R CFA DRG - Neuron [71] 
IGF-1/IGF-1R bone cancer pain. tibia bone cavity ↑ Neuron [73] 
IGF-1 lumbar disc herniation (LDH) model DRG ↑ 

 
Neuron [58] 

[74] 
IGF-1 infraorbital nerve injury (IONI) induced neuropathic pain TG ↑ 

infraorbital nerve ↑ 
Macrophage 
Satellite glial cell 

[76] 

IGF-1/IGF-1R Spinal cord injury induced neuropathic pain - - - 
IGF-1/IGF-1R pain associated with endometriosis peritoneal fluid (PF) ↑ Macrophage (IBA1) [77] 
IGF-1/IGF-1R TG neuron TG Neuron [73] 
IGF-1/IGF-1R chronic constriction injury (CCI)  Spinal cord ↑ Microglia (IGF-1) 

Astrocyte (IGF-1) 
Neuron (IGF-1) 
Neuron 
(IGF-1R)  

[78] 

IGF-1/ IGF-1R plantar incision induced pain DRG ↑ 
 

Neuron (IGF-1R) 
Satellite glial cell (IGF-1R) 

[34] 
 
 

IGF-1/IGF-1R Intraplantar recombinant (r) IGF-1 DRG (IGF-1R) ↑ TRPV1 neuron [67] 
IGF-2 spared nerve injury (SNI) induced neuropathic pain Spinal cord ↑ 

 
Neuron 
CD11b microglia 

[79] 
[80] 
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Table 2. The pain model, expression, localization of the IGF/IGF-1R relieving the pain.  

IGF/IGF-1R Pain model Expression Localization Reference 
IGF-1/ IGF-1R plantar incision induced pain Plantar tissue ↑ DRG [69] 
IGF-1 spinal nerve injury model Spinal cord ↑ CD11c+ microglia [35] 
IGF-1/IGF-1R Chemotherapy-induced peripheral neuropathy (CIPN) spinal cord↓ 

spinal cord neuron activity - 
IGF-1 (astrocyte) 
IGF-1R (Neuron) 
- 

[82] 
[83] 

IGF-1 Diabetic peripheral neuropathy (DPN) induced neuropathic pain Serum ↓ 
spinal cord ↓ 

- 
astrocyte 
Neuron 
microglia (major) 

[85] 
[87] 

IGF-1 spinal cord compression injury (SCI) induced neuropathic pain DRG - - [86] 
IGF-1 neuropathic pain following deafferentation injury DRG - - [88] 

 
Furthermore, IGF-1 in tibia bone marrow was 

increased in metastasized bone cancer pain model, 
while intraperitoneal injection IGF-1R inhibitor (PPP, 
20 mg/kg/12 h) in vivo can reverse mechanical 
allodynia and thermal hyperalgesia in rats with bone 
cancer pain[73]. Then the up-regulation of IGF-1 may 
be the key factor of painful radiculopathy induced by 
mechanical factors in a rat lumbar disc herniation 
(LDH) model[74] [58]. IGF-1 knockdown leads to 
abnormal reduction of mechanical pain[58]. 
Subcutaneous injection of IGF-1 (2 mg/kg) induced a 
significant allodynia in treatment-induced painful 
neuropathy of diabetes (TIND)[75]. In addition, 
orofacial nerve injury (IONI) induced neuropathic 
pain can up-regulate the IGF-1, while subcutaneous 
injection of IGF-1 neutralizing antibody can recover 
the mechanical head withdrawal reflex thresholds 
(MHWTs) significantly[76]. Forster et al demonstrated 
that in a vitro model of endometriosis associated 
macrophages, disease modified macrophages showed 
increased expression of IGF-1, and confirmed the 
expression of damaged resident macrophages in mice. 
IGF-1R inhibition (linsitinib, 40 mg/kg) attenuates 
endometriosis induced hyperalgesia in mice[77]. 
Interestingly, abnormal IGF-1/IGF-1R signaling in 
spinal cord contributes to chronic constriction injury 
(CCI) induced neuropathic pain and IGF-1R 
antagonism (nvp-aew54, 15 μg/day) or IGF-1 
neutralizing antibody (1 μg/day) can reduce pain 
behavior induced by CCI[78]. Similar to CCI, 
intrathecal administration of IGF-2 siRNA signifi-
cantly inhibited spared nerve injury (SNI) induced 
neuropathic pain by inhibiting the expression of IGF-2 
in the spinal cord[79]. Moreover, the treatment of 
pulsed radiofrequency (PRF) also alleviated neuro-
pathic pain caused by SNI through downregulating 
the expression of IGF-2 in spinal dorsal horn[80]. 
Therefore, in multiple animal models of chronic pain, 
IGF/IGF-1R pathway can aggravate chronic pain. 

Clinical data found that IGF-1 in peritoneal fluid 
(PF) significantly increased in patients with 
endometriosis, and its concentration was positively 
correlated with pain score[77]. Besides, in patients 
with breast cancer, increased IGF-1 concentration was 

reported new onset or worsening pain[81]. Speci-
fically, the IGF-1: IGFBP-3 ratio increased in patients 
who experienced new pain episodes or pain 
exacerbations, while it decreased statistically 
significantly in patients who did not experience new 
pain or pain exacerbations[81]. Similar to the results of 
animal experiments, the high expression of IGF-1 in 
patients strongly associated with increased pain score. 
So, both animal and clinical experiments suggest that 
IGF/IGF-1R can aggravate chronic pain.  

3.2.4. The IGF/IGF-1R pathway involved in relieving 
chronic pain 

More studies have shown that IGF/IGF-1R 
signaling pathway is involved in the occurrence and 
development of chronic pain (Table 2). Kohno et al 
found that 21 days after peripheral nerve injury (PNI), 
the up-regulation of IGF-1 in CD11c+ microglia of the 
spinal dorsal horn can alleviate neuropathic pain, 
while knockout of IGF-1 in CD11c+microglia can 
make neuropathic pain lasts for at least 56 days in 
mice[35]. Pain thresholds had recovered to baseline 
on the 35th day after PNI, and intrathecal injection of 
IGF1-neutralizing antibody could cause pain 
recurrence[35]. In addition, in the rat neuropathic 
pain model of chemotherapy induced peripheral 
neuropathy (CIPN), the expression of IGF-1 protein in 
the spinal cord was significantly reduced. Intravenous 
or intraperitoneal injection of rIGF-1 (1 μg) alleviated 
pain like behavior induced by chemotherapy[82]. In 
painful diabetic neuropathy (PDN) rat model, 
subcutaneous injection of IGF-1 (2.5mg/kg) can 
relieve neuropathic pain[83]. Nasal treatment with 
IGF-1 can relieve migraine-related pain in animal 
models[84]. Chu et al reported that the STZ treated 
mice developed hyperalgesia at the early stage, 
followed by hypoalgesia, and the systemic IGF-1 level 
was significantly reduced. Increasing circulating 
IGF-1 can significantly relieve neuropathic pain in 
diabetes[85]. Inhibition of IGF-1 (intrathecal injection 
of LV shIGF-1 lentivirus vector) can aggravate cord 
compression injury (SCI) induced neuropathic 
pain[86]. In addition, painful diabetic neuropathy 
significantly reduces the expression of IGF-1 in spinal 
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cord. Intraperitoneal injection rIGF-1(1 μg/d) in mice 
alleviates pain-like behavior induced by diabetes[87]. 
Interestingly, electroacupuncture treatment can 
relieve neuropathic pain following nerve injury by 
activating the IGF-1 pathway[88]. Bagriyanik et al 
found that resveratrol (RVT) reduced CCI induced 
damage through IGF-1 immunoreactivity[89].  

Clinical experiments also show that serum IGF-1 
level is related to pain. Low serum IGF-1 levels are 
associated with pain in patients with fibromyalgia 
syndrome (FMS)[90-92]. Koca et al reported that FMS 
patients showed lower IGF-1 serum levels, but with 
no related to disease severity[93]. However, another 
research found that women with FMS and low IGF-1 
levels improved their overall symptoms and number 
of pain points after receiving daily growth hormone 
therapy for 9 months, indicating that increased IGF-1 
level in serum can relieve FMS[94]. In a lasting 
12-month study, the average number of pain points 
(pairs) decreased by 60% after human growth 
hormone treatment for FMS patients with low level 
IGF-1[90]. Besides, a study recruited a total of 493 
FMS patients with low IGF-1 to receive the growth 
hormone treatment. Twelve to eighteen months after 
stopping the treatment, the growth hormone treat-
ment still had analgesic effect, showing its sustained 
action over time[95]. All of the above studies suggest 
that IGF/IGF-1R can relieve chronic pain. However, it 
has also been found in several reports to aggravate 
chronic pain. The reasons for the opposite results are 
mainly due to the different animal models, different 
observation time windows and different observation 
sites in each study. Therefore, more studies are 
needed to explore and find the pattern for the 
symptomatic management of pain. 

4. Mechanisms of IGF-1/IGF-1R pathway 
related to pain 
4.1. Relationship between IGF -1/IGF-1R 
pathway and neuronal excitability 

DRG neurons that diameter less than 30 μM are 
mainly involved in nociceptive signal transduc-
tion[96, 97]. The incubation of IGF-1 (100 nM) 
enhanced the peak amplitude of T-type calcium 
channel current in small DRG neurons, while the 
amplitude was only partly recovered in 3 minutes 
after IGF-1 was washed away[70]. However, the 
current was eliminated when JB-1 (a selective IGF-1R 
antagonist, 1 μM) was used, indicating that IGF-1R is 
involved in IGF-1 mediating the influence on T- type 
calcium channel current in small DRG neurons. The 
author also found that JB-1 mainly affects the current 
of Cav3.2 in DRG neurons[70]. T-type Cav3.2 calcium 
channel belongs to low voltage activated Ca2+ channel 

and is an important contributor to nociceptive signal 
transmission in primary afferent pain pathway[98, 
99]. Similar to this study, in another CFA induced 
chronic inflammatory pain mice model, T-type Cav3.2 
channel can facilitate and amplify pain signals 
through the activation of IGF-1/ IGF-1R[71]. Lin et al 
also found that the expression of Cav3.2 and IGF-1R 
in lumbar DRG was up-regulated after sciatic 
neurotomy, indicating the interaction of T-type 
Cav3.2 channel and IGF-1 can contribute to pain 
hypersensitivity in primary sensory nerves[100]. 
Besides, there are two main types of outward voltage 
gated K+ channel (Kv) currents in nociceptive neurons 
to induced pain: IA and IDR[101-103]. Bath application 
of IGF-1 (0.1 μM) inhibited IA in small TG neurons. 
After the elution of IGF-1, the amplitude of IA partially 
recovered to the pretreatment level within 5 minutes. 
However, treating TG neurons with selective IGF-1R 
antagonist PQ-401 (10 μM) completely eliminated 
IGF-1 (0.1 μM) induced IA reduction[72]. Transient 
receptor potential vanilloid 1 (TRPV1) current density 
increased in acutely isolated DRG neurons with 
MRMT-1 bone cancer pain in rats. Then the authors 
incubated DRG neurons with IGF-1 (30 or 
100 ng/mL), which could increase the expression of 
total and membrane TRPV1 protein, indicating that 
IGF-1 can aggravate pain by increasing TRPV1 
current[73].  

However, subcutaneous injections of IGF-1 (2.5 
mg/kg) can relieve the pain behaviors induced by 
PDN, and reverse the hyperactivity of neurons in the 
spinal cord and ventrolateral PAG[83]. Therefore, 
IGF-1/IGF-1R pathway can regulate pain by 
regulating the excitability of nociceptors and spinal 
cord. The opposite effect of IGF-1/IGF-1R pathway in 
pain may be related to different pain models or 
different effect regions. The peripheral IGF-1/IGF-1R 
pathway may play a role in promoting pain, while the 
central (spinal cord) IGF-1/IGF-1R pathway may play 
a role in inhibiting pain.  

4.2. Relationship between IGF /IGF-1R 
pathway and neuroinflammation as well as 
glial cells 

4.2.1 IGF /IGF-1R pathway and neuroinflammation 
P38, extracellular signal-regulated kinase (Erk), 

and Jun N-terminal kinase (JNK) are the family of 
mitogen-activated protein kinase (MAPK)[104, 105]. 
These molecules transfer from the cytoplasm to the 
nucleus and activate many transcription factors, such 
as NF-kappaB (NF- κB) and activator protein-1 (AP-1), 
which can promote the release of various molecules, 
including p16, p21, IL-6 and interlukin-18 (IL-8). They 
can thus cause inflammation in pain related 
disease[106, 107]. Intraplantar injection of rIGF-1 
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(50 μg/kg) increase the expression of c-raf and p-ERK, 
while JB1 (6 μg/mouse) pretreatment significantly 
reduced p-ERK and c-raf levels in DRG[67]. Besides, 
PRF can inhibit ERK1/2 activity in microglia by 
down-regulating IGF-2 to relieve the neuropathic 
pain[80]. Antagonism of spinal IGF-1R (nvp-aew541, 
15 μg) suppressed the overexpression of IL-1β, TNF-α, 
and IL-6 that induced by up-regulation of mTOR in 
CCI neuropathic pain[78]. 

Intrathecal or intraperitoneal injection of rIGF-1 
(1 μg) inhibits neuropathic pain induced by 
oxaliplatin therapy, which can reduce the expression 
of IL-17A and TNF- α in spinal cord[82]. In addition, 
downregulation of miR-130a-3p increased the expres-
sion of IGF-1 and IGF-1R in spinal cord. When the 
expression of IGF-1 and IGF-1R were up-regulated, 
they can suppress the expression of NF- κB 
phosphorylation and IL-1β, IL-6 and TNF-α in SCI 
rats[86].  

4.2.2 IGF /IGF-1R pathway and glial cell  
It is well known that the neuroinflammatory 

response is almostly caused by exactly glial cells. 
Therefore, activation of glial cells is also closely 
associated with neuroinflammation. A study reported 
that IONI promoted macrophage infiltration into 
damaged ION and the corresponding TG. On the 
third day after IONI, the amount of IGF-1 released by 
macrophages in ION and TG increased significantly. 
In addition, subcutaneous injection of neutralization 
of IGF-1 (20 ng) partially inhibited the mechanical 
hypersensitivity induced by IONI[76]. In CCI mice, 
the number of astrocytes collocated with IGF-1 in the 
ipsilateral spinal dorsal horn was significantly more 
than that of the contralateral side. Intrathecal injection 
of IGF-1 neutralizing antibody (1 μg/day, 3 days) 
inhibits activation of spinal astrocytes. Besides, 
inhibition of IGF-1 expression also suppressed the 
expression of spinal cord neuroinflammation such as 
TNF-a, IL-B and IL-6[78]. In endometriosis induced 
pain mice model, the mRNA expressions of Cox-2 and 
TNF-α that macrophages released in spinal cord 
increased and these levels decreased after depletion of 
macrophages with liposomal clodronate[77].  

The Science article found that PNI mice with 
exhausted spinal cord CD11c+microglia failed to 
recover spontaneously from this hypersensitivity 
reaction. Down-regulation of IGF-1 signal once again 
shows the pain hypersensitivity from the recovery. In 
mice with pain recovery, the depletion of 
CD11c+microglia or the interruption of IGF-1 signal 
led to the recurrence of pain hypersensitivity[35]. In 
PDN mice model, IGF-1 expression in spinal 
microglia decreased significantly. Intrathecal injection 
of rIGF-1 (1 μg/d, 3 days) prevents M1 microglia 

polarization (iNOS+Iba-1+microglia) and reduces the 
corresponding M1 neuroinflammation, such as iNOS, 
IL-1β and TNF-α[87]. In summary, IGF/IGF-1R can 
widely affect the occurrence and development of pain 
by regulating glial cells and neuroinflammation. 
Therefore, the intervention of IGF/IGF-1R pathway 
may regulate pain by regulating neuroinflammation. 

4.3. Relationship between IGF /IGF-1R 
pathway and other aspects 

Bath application of IGF-1 (0.1 μM) reduced IA in 
small TG neurons. When selective IGF-1R antagonist 
PQ-401 (10 μM) was used to treat the TG neurons, it 
could completely eliminate IGF-1 induced IA 

reduction. While when TG neurons were pretreated 
with phosphatidylinositol-3-kinase (PI3K) inhibitor 
wortmannin (1 μM), IGF-1 had no impact on IA. 
Another PI3K inhibitor LY294002 (20 μM) had the 
similar results, indicating that PI3K contributes to 
IGF-1R mediated IA reduction[72]. PI3K, known as a 
conservative signal transduction enzyme family, is 
involved in regulating cell growth, cycle entry, 
migration and survival[108, 109]. Protein kinase B 
(PKB/AKT), was activated via PI3K pathway[110], 
also plays an important role in the pain regulation of 
IGF/ IGF-1R pathway. Miura et al reported that after 
plantar incision, the expression of phosphorylated 
Akt in DRG neurons increased significantly and was 
inhibited by the single administration of picropodo-
phyllin (an inhibition of IGF-1R, 50 μg) to the plantar 
skins. The increase of IGF-1 production in skin tissues 
sensitizes primary afferent neurons through IGF-1R/ 
Akt pathway to promote pain hypersensitivity after 
tissue injury[34].  

Besides, dynamic regulation of GRK2 negatively 
regulates nociception in primary afferent neurons. 
Plantar injection of IGF-1 (1 μg) increased the 
expression of GRK2 in ipsilateral DRG. The 
application of IGF-1R inhibitor (picropodophyllin, 250 
µg/kg) prevented the induction of GRK2 and the 
regression of hyperalgesia after plantar incision, 
indicating that the induction of GRK2 expression 
driven by tissue IGF-1 has an effective analgesic 
effect[69]. Hu et al reported that the expression levels 
of IGF-1, pPI3K and pAkt down-regulated in DRG, 
and overexpression of IGF-1 reduced the pain 
intensity by activating PI3K/Akt pathway in rat 
model of adjacent dorsal root ganglionectomies[88]. 
Furthermore, after PNI, AXL mRNA was expressed in 
CD11chigh SDH microglia, which is a member of the 
TAM (TYRO3, AXL, and MERTK) family of tyrosine 
kinase receptors involved in the engulfment of myelin 
debris. AXL participates in the appearance of CD11 
chigh spinal dorsal horn microglia to induce the 
expression of IGF-1, promoting the relief of PNI 
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induced neuropathic pain[35]. Therefore, IGF/IGF-1R 
regulates pain through a variety of ways. In addition 
to participating in the regulation of neuronal 
excitability and neuroinflammation, it also regulates 
pain in other ways, such as apoptosis, autophagy, etc.  

5. Discussion and perspective 
In this review, we summarized the role of 

IGF/IGF-1R pathway in various types of pain. It was 
found that IGF/IGF-1R played different roles in 
different types of pain. Besides, IGF/IGF-1R also 
played different roles in different regions. The 
peripheral IGF-1/IGF-1R pathway mainly plays a role 
in promoting pain, while the central (spinal cord) 
IGF-1/IGF-1R pathway mainly play a role in relieving 
pain. The mechanisms of IGF are different in different 
pain models. IGF-1/IGF-1R pathway increases 
excitability and pain sensitivity in peripheral neurons, 
but it can reverse the excitability of neurons at the 
spinal cord, thereby reducing pain sensitivity. 
Besides, another main mechanism of IGF-1/IGF-1R 
pathway is to affect pain by regulating glial cells and 
neuroinflammation. However, IGF-1/IGF-1R has 

different effects on inflammation in different pain 
models. Of course, the IGF-1/IGF-1R pathway can 
also regulate pain through autophagy, demyelination 
and PI3K/AKT pathway. At last, few studies reported 
the relationship between IGF-2 and pain (see Fig. 1 for 
summary).  

Currently, the main researches mainly focused 
on the relationship between IGF-1 and pain. 
Researches on IGF and pain mainly focus on 
peripheral (DRG, TG) and lower central (spinal cord) 
system. However, IGF-1R is expressed not only in 
DRG[51] and spinal cord[111], but also in brain such 
as hippocampus and cortex[111-117]. Chen et al 
indicated that rufinamide can improve cognitive 
function and increase neurogenesis in the hippo-
campus of the aged gerbil by increasing the IGF-1, 
IGF-1R and p-CREB expressions[63]. IGF-1R signals 
were damaged in Alzheimer's disease (AD) neurons 
in temporal cortex, which indicated that degenerated 
neurons in AD might be resistant to IGF-1R/IR 
signals[118]. In hippocampus, IGF-1 signaling axis can 
regulate traumatic brain injury (TBI) induced damage 
(cognitive as well as cellular)[119]. Therefore, 

 

 
Figure 1. The graphic image of this review. The regulation of IGF/IGF-1R pathway in DRG and spinal cord has obvious effect on pain. The IGF/IGF-1R regulates pain by acting 
on neuronal excitability, neuroinflammation, glial cells, apoptosis, etc. 
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IGF-1/IGF-1R also plays a regulatory role in various 
diseases in the brain. Pain, especially chronic pain, is 
closely related to the brain[120-122]. We speculate that 
the IGF-1/IGF-1R signal axis in the brain is also 
involved in pain regulation, which needs further 
research to confirm. Combined with the role of 
IGF/IGF-1R in DRG and spinal cord, IGF/IGF-1R in 
different regions of the brain may play different roles 
in regulating pain, which also needs further research 
in the future. 

Besides, combined with existing research 
findings, it was found that the regulation of IGF/ 
IGF-1R pathway on pain is closely related to the time 
of pain occurrence. In the acute phase of pain, 
IGF/IGF-1R pathway mainly plays a role in 
promoting pain. While with the extension of time, 
IGF/IGF-1R pathway may alleviate pain. It suggests 
that IGF/IGF-1R may play different roles in different 
stages of pain occurrence and development. This is 
also the research that needs to be continued in the 
future. 

Last, although some studies have confirmed that 
IGF-2 also played a regulatory role in pain, there are 
few studies at present about the relationship between 
them. Uchimura et al reported that IGF-2 inhibited the 
expression of IL-1β induced cartilage matrix loss and 
promoted cartilage integrity in experimental 
osteoarthritis (OA)[123]. In OA cartilage, the IGF-1, 
IGF-2, IGF-1R and IRS1 in the degenerated area 
declined compared with the reserved area[124]. 
Multiple study also indicated the role of IGF-2 in 
OA[125-127]. Therefore, IGF-2 may also play an 
important role in pain, which is also the direction for 
the further researches.  

6. Conclusion 
Multiple studies have found that IGF/IGF-1R 

pathway plays an important role in the occurrence 
and development of pain. IGF/IGF-1R regulates pain 
by acting on neuronal excitability, neuroinflam-
mation, glial cells, apoptosis, etc. In conclusion, 
although more deep researches are needed in the 
future, these studies indicate that IGF/IGF-1R signal 
pathway is a promising therapeutic target for pain. 
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