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Abstract 

Cuproptosis, a new type of programmed cell death (PCD), is closely related to cellular tricarboxylic acid 
cycle and cellular respiration, while hypoxia can modulate PCD. However, their combined contribution 
to tumor subtyping remains unexplored. Here, we applied a multi-omics approach to classify 
TCGA_COADREAD based on cuproptosis and hypoxia. The classification was validated in three 
colorectal cancer (CRC) cohorts and extended to a pan-cancer analysis. The results demonstrated that 
pan-cancers, including CRC, could be divided into three distinct subgroups (cuproptosis-hypoxia 
subtypes, CHSs): CHS1 had active metabolism and poor immune infiltration but low fibrosis; CHS3 had 
contrasting characteristics with CHS1; CHS2 was intermediate. CHS1 may respond well to cuproptosis 
inducers, and CHS3 may benefit from a combination of immunotherapy and anti-fibrosis/anti-hypoxia 
therapies. In CRC, the CHSs also showed a significant difference in prognosis and sensitivity to classic 
drugs. Organoid-based drug sensitivity assays validated the results of transcriptomics. Cell-based assays 
indicated that masitinib and simvastatin had specific effects on CHS1 and CHS3, respectively. A 
user-friendly website based on the classifier was developed (https://fan-app.shinyapps.io/chs_classifier/) 
for accessibility. Overall, the classifier based on cuproptosis and hypoxia was applicable to most 
pan-cancers and could aid in personalized cancer therapy. 
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Introduction 
As an indispensable trace element, copper (Cu) 

balance is essential for organisms since abnormal Cu 
metabolism affects cellular respiration, proliferation, 
and migration [1, 2] and is linked to multiple tumors 
[3]. The influence of Cu on tumors is generally 
believed to occur through the regulation of 
intracellular redox reactions [4]. Until 2022, aberrant 

intracellular Cu have been found to mediate 
programmed cell death (PCD), but the underlying 
mechanism is distinct from previously known forms 
of PCD. Excessive Cu binds directly to lipid-acylated 
components of the tricarboxylic acid (TCA) cycle, 
causing the accumulation of lipid-acylated proteins 
and loss of iron-sulfur cluster proteins, resulting in 
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cell death. Additionally, it has been observed that 
cells reliant on mitochondrial respiration are 
significantly more sensitive to Cu ionophores than 
those reliant on glycolysis, revealing the importance 
of cellular respiration in cuproptosis [5].  

Cellular respiration is dependent on oxygen 
levels in intracellular environment. The deleterious 
biological effects of hypoxia in tumors have been 
widely recognized [6]. Hypoxia affects tumor 
behavior through modulating of the physicochemical 
environment and intracellular signaling transduction 
pathways [7]. Moreover, hypoxia has been found to 
regulate multiple types of PCD [8]. Tsvetkov et al. also 
observed that while stabilization of the HIF pathway 
did not alleviate cuproptosis, improving the hypoxic 
environment did [5]. Given that cuproptosis is a novel 
form of PCD, the interplay between it and hypoxia is a 
topic that merits further exploration. 

Cu overload is associated with the progression 
and prognosis of colorectal cancer (CRC) [9]. But the 
underlying mechanisms remain poorly understood. 
As for hypoxia, it has impact on various aspects of 
CRC, including altering the cellular metabolism, 
tumor microenvironment (TME), and radiotherapy 
sensitivity [10, 11]. 

Heterogeneity is common in cancers that poses a 
significant obstacle to precision therapy [12,13]. 
Therefore, a classification system capable of 
identifying patient subgroups with distinct features 
would facilitate personalized treatments. Herein, we 
hypothesize that multi-omics analysis of patients with 
varying hypoxic and cuproptotic statuses may help 
elucidate the disparities and links among individuals, 
offering novel insights into tumor classification and 
treatment. 

Materials and methods 
The flow diagram of the study is shown in 

Figure 1. 

Patient cohorts and cell lines 
Transcriptomic, non-coding RNA and 

methylation data of TCGA_COADREAD were 
downloaded from the USCS Xena portal. 
Transcriptomic data of pan-cancer were obtained 
from pan-cancer subsets on XENA, normalized by 
log2 (X+1). After removing non-tumor samples, 9,185 
samples were reserved for analysis.  

A total of 1,281 CRC patients from three Gene 
Expression Omnibus (GEO) databases were recruited 
(accession #GSE39582, #GSE196576, and #GSE28702). 
Also, the single-cell RNA (scRNA) dataset GSE144735, 
including 8,254 cells, was downloaded. 

Four CRC cell lines, HCT116, LS180, HT29, and 
SW620, were purchased from the Institute of 

Biochemistry and Cell Biology, Chinese Academy of 
Sciences, Shanghai, China. All cells were cultured in 
high-glucose Dulbecco’s modified eagle’s medium 
(DMEM) (KeyGEN, China) with 10% fetal bovine 
serum (FBS) (Hyclone, USA) and 1% penicillin/ 
streptomycin solution (GIBCO, USA) at 37 °C in a 5% 
CO2 incubator. Masoprocol, forskolin, kenpaullone, 
pazopanib, masitinib, simvastatin, vorinostat, 
MK-2206, and MK-0752 were purchased from 
MedChemExpress (USA). Idarubicin was purchased 
from TargetMol (China). 

Twenty-eight CRC samples were collected from 
Zhejiang Cancer Hospital for organoid culture. This 
study was approved by the Institutional Review 
Boards of Zhejiang Cancer Hospital (IRB-2021-291) 
and performed in accordance with the recognized 
ethical guidelines of the Declaration of Helsinki. All 
participants signed informed consent forms.  

The profiles of the datasets in this study are 
listed in Table 1. 

 

Table 1. The profile of datasets 

 Dataset Sample Type Number Source 
Training set TCGA_COADREAD tissue 381 TCGA 
Validation set GSE39582 tissue 566 GEO 
 GSE196576 tissue 578 GEO 
 GSE28702 tissue 83 GEO 
 GSE144735 single cell 8254 GEO 
 TCGA_PANCAN* tissue 9185 TCGA 
Re-validation set - organoid 28 this study 
 - cell line 4 this study 

* TCGA_PANCAN, including Adrenocortical carcinoma (ACC), Bladder urothelial 
carcinoma (BLCA), Breast invasive carcinoma (BRCA), Cervical squamous cell 
carcinoma and Endocervical adenocarcinoma (CESC), Cholangiocarcinoma 
(CHOL), Colon adenocarcinoma/Rectum adenocarcinoma (COADREAD), Diffuse 
large B-cell lymphoma (DLBL), Esophageal carcinoma (ESCA), Stomach 
adenocarcinoma (STAD), Glioma (GBMLGG), Head and Neck squamous cell 
carcinoma (HNSC), Kidney chromophobe (KICH), Kidney renal clear cell 
carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP), Liver 
hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous 
cell carcinoma (LUSC), Mesothelioma, Ovarian serous cystadenocarcinoma (OV), 
Pancreatic adenocarcinoma (PAAD), Pheochromocytoma and Paraganglioma 
(PCPG), Prostate adenocarcinoma (PRAD), Sarcoma, Skin cutaneous melanoma 
(SKCM), Testicular germ cell tumor (TGCT), Thyroid carcinoma (THCA), Uterine 
Corpus Endometrial carcinoma (UCEC), Uterine carcinosarcoma (UCS), and Uveal 
melanoma (UVM). 

 

Consensus molecular clustering  
The key genes for cuproptosis were obtained 

from the literature [5], and the key genes for hypoxia 
were obtained from the hallmark of the Molecular 
Signatures Database (MSigDB), excluding genes 
directly associated with the HIF pathway. The key 
genes are listed in Table S1. R package 
“ConsensusClusterPlus” [14] was applied to execute 
consensus clustering of TCGA_COADREAD. 
Calculating the Euclidean distances with k-means, we 
chose three as the optimal cluster. Using 
TCGA_COADREAD as the training set, we applied 
the K-nearest neighbor algorithm (KNN) [15] to 
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classify the samples in the validation and 
re-validation sets. 

Functional enrichment analysis  
We applied the "limma" package for the 

differential analysis. Differential expression genes 
(DEGs) was determined by identifying genes with 

fold change of ≥1 and adjusted P value (FDR) of ≤0.05. 
Gene ontology (GO), gene set enrichment analysis 
(GSEA), and gene set variation analysis (GSVA) were 
performed with the R package “clusterProfiler” [16] 
based on gene sets of MsigDB and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG).  

 

 
Figure 1. The flowchart of the study.  
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Immune-related features 
We applied multiple algorithms to estimate the 

relative enrichment of immune cells, including 
TIMER 2.0 [17], EPIC [18], and the microenvironment 
cell-populations counter (MCP-counter) [19]. The 
Tracking Tumor Immunophenotypes (TIP) was 
applied to assess the immune cycle [20]. 

The “ESTIMATE” [21] package was used to 
calculate the ESTIMATE, stromal, and immune scores. 
Functional gene expression signatures (Fges) were 
applied for an overview of the profile of immune 
characteristics [22]. 

Methylation and non-coding RNA (ncRNA) 
analysis 

The collated methylation data were analyzed 
using the “CHAMP” package [23]. 

Integrating the interactive information of ncRNA 
and mRNA in Starbase [24], mirDIP [25] and 
Targetscan [26] datasets, we obtained hub lncRNAs 
and corresponding mRNAs. Then, the ceNetwork was 
constructed with Cytoscope. 

The construction of a cuproptosis-hypoxia 
subtype (CHS) website 

For researches’ accessibility, we constructed a 
website dedicated to CHS analysis using the standard 
Model-View-Controller pattern with the "Shiny" 
package.  

Colorectal cancer organoids (CRCOs) assay 
Resected colorectal cancer tumor tissues were 

placed in 4 °C phosphate buffered salin with normo-
cin (Invitrogen, China) and gentamicin/amphoteritin 
B (GIBCO, USA) for cell isolation. The tissues were cut 
into tiny fragments after removing blood and necrotic 
fractions. The tissue fragments were dissociated with 
digestion buffer (7 mL DMEM) (GIBCO,USA), 500 
U/mL collagenase IV (Sigma, USA), 1.5 mg/mL 
collagenase II (Solarbio, China), 20 mg/mL 
hyaluronidase (Solarbio, China), 0.1 mg/mL dispase 
type II (Sigma, USA), 10 uM RHOK inhibitor ly27632 
(Sigma, USA), and 1% FBS (Hyclone, USA) on a 
shaker at 37 °C for 30–60min. After lysing red cells, 
dissociated single cells were resuspended with 
Matrigel gel, and were pipetted into pre-warmed 
24-well plates. CRCO culture medium (1 mL/well) 
[27] was added after gel solidification. Next, the plates 
were incubated in a 37 °C and 5% CO2 culture 
incubator. CRCO culture medium was refreshed 
every 3 days. To characterize the organoids and 
validate their fidelity to the original tumor, we 
performed immunofluorescence staining for 
colorectal cancer organoid markers, including Ki-67, 
CDX2, β-catenin, CK20, and CK-pan. 

To test the IC50 values of the drugs, 100 
organoids with a particle size of 70 um to 100 um were 
selected and laid in 96-well plate per well. Incubating 
with CRCO culture medium for 24 h, we replaced the 
primary culture medium with a new organoids 
culture medium containing different concentrations of 
5-Fu, SN38 or oxaliplatin (Selleck, USA). After 5 days, 
the organoids viability was evaluated with 
Cell-Titer-Glo 3D Cell viability assay (Promega, USA) 
according to the manufacturer’s instruction. 

Drug susceptibility analysis 
We collected the target genes of CRC drugs from 

Drugbank [28] and analyzed their expressions. 
Moreover, we submitted DEGs to the CMap database 
to predict potential drugs. Next, we determined the 
connection between the drugs and the key genes 
using the Cancer Cell Line Encyclopedia database. 

Cell proliferation and migration assay 
The cell counting kit-8 assay (BEIERBO, China) 

was used to detect cell proliferation according to the 
manufacturer’s protocol.  

We used 24 Transwell chambers (Corning, USA) 
for the migration assay. The detected cells were 
suspended in a serum-free medium, and were 
inoculated in the upper chambers. The lower 
chambers contained DMEM with 10% FBS. Incubating 
for 24 h, we fixed the cells on the bottom side of the 
membrane with 4% methanol for 15 min after wiping 
the top side. Then, the fixed cells were stained with 
0.1% crystal violet for 15 min at room temperature, 
photographed by light microscope (Leica, Germany) 
and manually counted. 

Quantitative Real-time PCR (qPCR) 
Total RNA was extracted from the cells using a 

cellular RNA extraction kit (Vazyme, China) 
following the manufacturer's instructions. The 
extracted RNA was then reverse transcribed into 
complementary DNA (cDNA). For the qPCR 
reactions, the cDNA, SYBR Green master mix 
(Vazyme, China), double-distilled water (ddH2O), 
and gene-specific primers (refer to Table S2) were 
mixed to the reaction mixture. The reaction mixture 
was subjected to denaturation, annealing, and 
extension to complete the amplification process 
(applied biosystems, USA). 

Western blot 
The cells were first placed on ice and lysed to 

extract cellular proteins. The cell lysate was then 
subjected to SDS-PAGE (sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis) to 
separate the proteins based on their molecular weight. 
Then, the proteins were transferred onto a PVDF 
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(polyvinylidene fluoride) membrane. To prevent 
non-specific binding, the PVDF membrane was 
blocked with non-fat milk. After blocking, the 
membrane was incubated with specific primary 
antibodies against the target proteins (abcam, USA). 
Subsequently, the membrane was incubated with 
secondary antibodies.  

Finally, the chemiluminescent signals were 
captured by imaging system (Azure Biosystems, 
California). 

Statistical analysis 
All statistical analyses were performed using R 

software (version 4.1.2). The Kaplan–Meier survival 
curve was plotted using the 'Survminer' package. 
Univariate Cox and LASSO Cox regression analyses 
were applied to establish the prognostic model. The R 
package “survivalROC” was used for the 
time-dependent receiver operating characteristic 
(ROC) curve. The “rms” package was employed to 
construct nomogram and calibration curves. The 
linear relationship was measured using Pearson’s 
correlation analysis. The Wilcoxon test was used to 
compare the differences between the two groups. The 
analysis of variance test was performed for multiple 
groups. The survival times were compared using the 
log-rank test. All p-values were two-sided, and values 
< 0.05 were considered statistically significant. 

Results  
The establishment of cuproptosis-hypoxia 
subtypes 

Using unsupervised clustering, TCGA_ 
COADREAD patients were classified into three 
clusters, namely CHS1, CHS2, and CHS3, based on 
the key genes associated with cuproptosis and 
hypoxia (Figure S1A). CHS1 had the highest scores for 
cuproptosis and the lowest scores for hypoxia, while 
CHS3 had the opposite (Figure S1B). For the 
validation datasets, the score characteristics were 
consistent with those of the training set (Figure S1F). 
CHS1 had an earlier stage and fewer metastases, 
whereas CHS3 had an inverse trend (Figure S1C). 
However, there were no significant differences among 
the three subtypes regarding age and sex (Figure 
S1D-E). 

Mutation characteristics 
Single nucleotide polymorphism (SNP) charac-

teristics presented disparities in the top 10 genes 
among the CHSs (Figure 2A). The mutation rates 
varied significantly, even among the genes that were 
shared among them. For instance, Kras, a recognized 
oncogene, was found to be mutated in 54% of CHS1 
and only 3% of CHS3. Kras mutations in CRC cells 

altered the demand for Cu bioavailability by varying 
the intracellular Cu pool [29]. Considering the 
difference in cuproptosis among the CHSs, Kras 
status may be associated with cuproptosis in CRC. As 
an unfavorable prognostic factor in CRC, the Braf 
mutation rate was 3.7% and 17.3% in CHS1 and CHS3, 
respectively, indicating poor prognosis in CHS3 
(Figure 2B). The mutation tendencies of Kras and Braf 
among CHSs were verified in the validation set 
(Figure 2C). The proportion of SNP types also differed 
among the subtypes (Figure S1G). 

Copy number variation (CNV) analysis showed 
that abnormal amplification and deletion varied 
among the CHSs (Figure 2D). The loci with mutation 
rate results q < 0.05 were retained for GO enrichment 
analysis. Loci in CHS1 were enriched for circulating 
immunoglobulins, adaptive immune responses, and 
so on. The results of CHS2 included mRNA splicing 
and cellular responses to INF_a, whereas the results of 
CHS3 were lipid metabolism, and endogenous 
apoptosis, among others (Figure 2E-G).  

 Profile of hallmarks 
We performed GSVA based on hallmarks [30] to 

profile the features of the CHSs. Surprisingly, there 
were significant differences among almost all gene 
sets among the subtypes (Figure 3A). The ability of 
cell proliferation, invasion, and metastasis, avoiding 
immune destruction, and inducing angiogenesis were 
stronger in CHS3, whereas evading growth 
suppression and dysregulation of energy metabolism 
were stronger in CHS1. The same trend was also 
observed in the three validation sets (Figure S2A-C). 
We performed GSVA based on GO genesets to further 
analyze multiple general biological traits. As shown in 
Figure 3B, there were disparities in proliferation, 
angiogenesis, invasion, stemness, and immunity, all 
of which were more conspicuous between CHS1 and 
CHS3. 

To explore the differences between CHS1 and 
CHS3, we first performed a differential analysis to 
identify DEGs, based on which we performed GO 
analysis. The results showed that DEGs were mainly 
enriched in metastasis, and immune-related pathways 
(Figure 3C). Further, we observed that GSEA of 
representative pathways with classic biological traits 
were more active in CHS3 (Figure 3D, Figure S2G,I), 
which also verified the results of GSVA (Figure 3B). In 
the three validation cohorts, all the above results 
presented identical tendencies to the training sets 
(Figure S2D-F, Figure S3A-E). 

The consensus molecular subtype (CMS) is 
probably the most robust classification for CRC. It 
categorized patients into 4 clusters, namely, CMS1 
with hypermutation and immune activation; CMS2 
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with marked WNT and MYC signaling activation; 
CMS3, evident metabolic dysregulation; and CMS4 
with prominent TGF-β activation, stromal invasion 
angiogenesis and poor prognosis [31]. As shown in 
Figure 3E, CHS1 mainly corresponded to CMS2 and 
CMS3, CHS2 had no tendentious distribution, and 

CHS3 predominantly belonged to CMS4, which 
aligned with the hallmark features and prognostic 
characteristics of CHSs. The correspondence of both 
taxonomies was identical in the validation cohorts 
(Figure S3F).  

 
 

 
Figure 2. The genomic characteristics in CHSs. A. The characteristics of SNP in 3 CHSs. B,C. Kras and Braf mutation rate of CHSs in training set and GSE39582, 
respectively. D. The characteristics of CNV in CHS1, CHS2, CHS3. E-G. The result of GO analysis to loci with mutation in CHS1, CHS2, CHS3.  
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Figure 3. Representative biological characteristics in CHSs. A. The features of hallmarks of each subtype. B. The key biological traits of each subtype. C. The results of 
GO enrichment analysis on DEGs. D. The results of GSEA analysis on proliferation, angiogenesis. E. The correspondence between CHS and CMS. F. The metabolic profile among 
3 CHSs. G. GSEA analysis of TCA cycle and lipoic acid metabolism.  

 
The metabolic profile of the CHSs  

Since cell metabolism is associated with both 
cuproptosis and hypoxia [32,33], as well as the 

implications of energy metabolism in hallmark 
analyses, we performed GSVA based on all KEGG 
metabolic pathways to explore the metabolic profile 
of CHSs. This demonstrated that, except for glycan, 
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the metabolism of other substances was the most 
active in CHS1. Notably, the TCA cycle and lipoic acid 
metabolism, closely related to cuproptosis, were 
much more active in CHS1 (Figure 3F, 3G), which 
corresponds to the physiological relationship between 
them and cuproptosis. Due to oxidative phospho-
rylation being a critical step in aerobic respiration 
following the TCA cycle, we also conducted GSEA on 
oxidative phosphorylation. The results indicated that 
there was no significant difference in the extent of 
oxidative phosphorylation between the CHS1 and 
CHS3 (p = 0.705). It is consistent with the findings 
from Tsvetkov et al., indicating that the impact of 
copper on cuproptosis is exerted through the TCA 
cycle rather than directly targeting the electron 
transport chain. The metabolic analysis results of the 
three validation datasets were similar to those of the 
training group (Figure S4A-E).  

Immune landscape among the CHSs 
The immune system acts as an important 

anti-tumor barrier [34]. The abundance and diversity 
of the T-cell repertoire (TCR) and B-cell repertoire 
(BCR) were higher in CHS3, suggesting more 
infiltration of T and B cells in CHS3 (Figure S5A,B). 
The results of TIMER showed that six major immune 
cell clusters differed significantly among CHSs and 
were the most abundant in CHS3 (Figure 4A). The 
results of EPIC were largely consistent with TIMER. 
Notably, the fraction of cancer-associated fibroblasts 
(CAFs) was also much higher in CSH3 (Figure 4B), 
consistent with hallmarks and CMS results [35]. The 
results of MCP-counter were also in accordance with 
TIMER and EPIC (Figure S5D). 

Next, we used the ESTIMATE algorithm to 
assess the overall status of the TME (Figure 4C). The 
three indices obtained from ESTIMATE were highest 
in CSH3, suggesting that the immune cells and 
stromal components in CHS3 were relatively more 
abundant. The tumor purity of CHS3 was the lowest, 
which was negative with the estimated score. The 
scores of the validation cohorts presented the same 
trend (Figure S5E-G). 

Mellman et al. summarized the complex 
anti-tumor process of immune cells as a cancer- 
immunity cycle [36, 37]. Our analysis of the 
cancer-immunity cycle demonstrated that the release 
of cancer antigens and the infiltration of various 
immune cells were more enriched in CHS3. However, 
the recognition and killing of cancer cells appeared 
more inert in CHS3 (Figure S5H). The infiltration of 
more suppressive cells and the inhibitory effect of the 
TME in CHS3 might have caused this. Further, the 

validation datasets showed a similar tendency (Figure 
S5I). 

We measured the expression of immune 
checkpoint blockade (ICB)-related molecules and 
observed that their expression was the highest in 
CHS3 (Figure 4D). A high lymphocyte fraction was 
also associated with better efficacy of ICB [38-40]. The 
analysis demonstrated that the lymphocyte fraction 
was also the highest in CHS3 (Figure S5C). The 
efficacy of ICB is directly influenced by the TME [41]. 
Fowler et al. established Fges (functional gene 
expression signatures) to classify the TME into four 
distinct subtypes [42]. The analysis showed that the 
features of Fges in the three subtypes were distinct 
(Figure 4E). CHS1 mainly belonged to subtypes D and 
IE, and CHS3 mainly belonged to subtypes IE/F and 
F, indicating that CHS3 was highly fibrotic and 
responded poorly to immunotherapy (Figure 4F). The 
expression of ICB and the TME subtypes in the three 
validation cohorts presented the same tendency 
(Figure S6A-C). Therefore, improving the fibrotic 
stroma is likely a prerequisite for the satisfactory 
effect of immunotherapy in CHS3. 

Examining the characteristics of the subtypes 
at the single cell level 

After annotating the cell types, we obtained 
2,212 tumor cells from the single-cell dataset (Figure 
5A). The expression of some key genes showed 
obvious disparities. For instance, the cuproptosis 
regulators ATP7B and SLC31A1 are almost 
exclusively expressed in tumor cells. In contrast, some 
genes such as SLC2A3 and RORA are highly 
expressed in other cells except tumor cells (Figure 5B, 
Figure S7A).  

Our classifier classified the tumor cells into three 
clusters to observe the biological characteristics 
(Figure S7B) and verify the conclusions of the bulk 
transcriptomic data. Namely, the TCA cycle and lipoic 
acid metabolism were more active in CHS1 than in 
CHS3 (Figure S7C). Other representative features 
were stronger in CHS3 cells than in CHS1 (Figure 
5C-E).  

DNA methylation pattern and features of the 
microbiota among the CHSs 

Aberrant methylation is associated with 
tumorigenesis, apoptosis, and therapeutic resistance 
[43-45]. The comparison of methylation sites between 
CHS1 and CHS3 revealed differentially methylated 
sites (Figure S7D). Immunity and lipid metabolism 
were among the top ten pathways of enrichment 
analysis based on differential sites (Figure S7E), which 
verified the reliability of the transcriptome analysis 
results from another dimension. 
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Figure 4. The immune landscape among 3 CHSs. A,B. The abundance of immune cells by TIMER, EPIC. C. The scores of Estimate. ∗, p<0.05; ∗∗, p<0.01; ∗∗∗, p<0.001. D. 
The expression of ICB in each subtype. ICB, immune checkpoint blockade. E. The evaluation of Fges for immune. Fges, functional gene expression signatures. F. The 
correspondence between CHS and Fges classification. D, immune-depleted; F, fibrotic; IE, immune-enriched, non-fibrotic; IE/F, immune-enriched, fibrotic.  

 
The importance of microbiota in the origin, 

development, and therapeutic response of CRC has 
been gradually recognized [46], especially Fusobac-
terium nucleatum (F.n) [47]. The F.n abundance in 
CHS3 was significantly higher (Figure 5F). TIGIT and 
BIRC3 are key factors interacting with F.n to suppress 

tumor immunity and promote chemoresistance in 
CRC [48, 49]. LBP, MD2, TLR4 and CD14 are 
responsible for general bacterial effects [50]. Analysis 
of the above genes revealed that their expression in 
CHS3 was significantly higher, consistent with the 
richness of F.n (Figure 5G, Figure S7F). GSEA based 
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on the genesets of response to bacteria showed that 
the p-value of each pathway was less than 0.05 (Figure 
5H). This indicates that F.n in tissues may alter the 

transduction of multiple signaling pathways, thereby 
affecting the tumorigenesis and progression of CRC. 

 

 
Figure 5. Single cell and Fusobacterium nucleatum analysis. A. The distribution of cell type in GSE144735. B. The expression of ATP7B and SLC31A1 in single cells. C-E. 
The GSEA analysis on proliferation, stemness, invasion of cancer cells. F. The abundance of F.n among 3 subtypes. H. The result of GSEA analysis on bacteria-related pathways. 
G. The expression of TIGIT, BIRC3, CD14 among 3 subtypes. ∗, p<0.05; ∗∗, p<0.01; ∗∗∗, p<0.001.  
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Construction of the competing endogenous 
RNA (ceRNA) network  

Salmena et al. proposed the concept of ceRNAs 
to describe sophisticated regulatory relationships 
among different types of ncRNAs [51]. It was recently 
discovered that they are non-negligible in various 
diseases, including CRC [52, 53]. We performed 
differential analysis for miRNAs and obtained 150 
differentially expressed miRNAs. Enrichment 
analysis demonstrated that differential miRNAs were 
enriched in JNK cascade, and interferon-gamma 
binding (Figure S8A). Based on the differential 
miRNAs and lncRNAs, we acquired 10 hub lncRNAs 
and 28 hub miRNAs using StarBase. Next, we utilized 
miRNA-mRNA predictive websites obtained 409 
targeted mRNAs, and successfully visualized the 
ceNetwork with Cytoscope (Table S3, Figure S8B,C).  

Pan-cancer analysis 
Given that both cuproptosis and hypoxia are 

non-cancer specific, we explored whether the 
above-mentioned taxonomy is applicable to other 
cancers. The KNN was applied to classify cancers 
using TCGA-COADREAD as the training set. Most 
tumors had the same score characteristics as 
CRC—the cuproptosis score was highest in CHS1 and 
lowest in CHS3, whereas the hypoxia score was the 
opposite (Figure 6A).  

Profile of pan-cancer hallmarks 
Since the hallmarks of CRC were significantly 

different among the CHSs, we performed GSVA of 
the hallmarks to investigate whether the CHSs of 
pan-cancer had the same biological features. In almost 
all cancers, CHS3 exhibited more active cell 
proliferation, metastasis, immune destruction, and 
angiogenesis, whereas CHS1 had stronger ability to 
evading growth inhibition and dysregulation of 
energy metabolism (Figure 6B, Figure S9). Further, we 
performed GSVA of various specific pathways in 
pan-cancer. Most cancers were identical to CRC, with 
significant differences in proliferation, stemness, 
invasion, angiogenesis, and immunity among the 
CHSs. The above differences were more evident 
between CHS1 and CHS3 (Figure S10A-E). The results 
of the GSEA were in accordance with the GSVA, i.e., 
the mentioned features were more active in CHS3 
(Figure 7A). 

Metabolic characteristics of pan-cancer 
GSVA based on the KEGG metabolic pathway 

presented that the metabolic characteristics of most 
tumors had the same trend as that of CRC—the 
substance metabolism was the most active in CHS1, 
except for glycan biosynthesis (Figure 6C, Figure S11). 

The characteristics of cancers whose pathological type 
was adenocarcinoma had a higher similarity to CRC, 
highlighting the importance of tissue origin and 
pathological type. The activity of TCA cycle and lipoic 
acid metabolism presented the similar trend (Figure 
S12, S13). These results revealed that CHS classifi-
cation is an important aspect of tumor metabolism, 
especially adenocarcinoma. 

The immune landscape among pan-cancer CHSs 
TIMER, EPIC, and MCP-counter were used to 

assess the pan-cancer immune cell infiltration. We 
found conspicuous differences among the CHSs for 
the six immune cells in most cancer types with TIMER 
and the trend was the same as in CRC (Figure 7B). The 
results obtained via EPIC and MCP-counter were also 
identical to those of CRC (Figure S14A,B; only 
representative cancer types are shown). The 
abundance and diversity of TCR and BCR showed the 
same trend (Figure S15A-D). According to the 
ESTIMATE assessment, the infiltration of immune 
cells and stromal components in most cancers was 
similar to that in CRC among each subtype (Figure 
S14C). As in CRC, the expression of ICB-related 
molecules was highest in CHS, but lowest in CHS1 
(Figure S15E). Then, we classified the TME of 
pan-cancer into four subtypes based on Fges and 
compared them with the CHSs, and the 
correspondence was accordant with CRC. Namely, 
the majority of CHS1 belonged to subtype D, and 
CHS3 belonged to subtype IE/F or F, which 
confirmed the high fibrosis of the TME in CHS3 
(Figure 7C). 

Exploration of the clustering in clinical 
application 

Sensitivity of classic drugs and organoid validation 
To evaluate the drug sensitivity of CHSs, we 

retrieved the target molecules of CRC drugs from 
Drugbank and analyzed their expression specifically 
within the CHSs. We observed distinct differences in 
the expression of multiple targets of chemothe-
rapeutic and targeted drugs in the CHSs (Figure 8A). 
The higher expression of targeted molecules in CHS3 
indicated that the cluster probably benefited more 
from the drugs.  

Samples of organoids were successfully 
classified into CHSs with transcriptomic data (Figure 
S16A). The IC50 values of organoids was consistent 
with the DrugBank’s prediction. CHS3 was the most 
sensitive to fluorine and SN38 (the active form of 
irinotecan in vivo), whereas CHS1 was relatively 
insensitive (Figure 8B). Patients of CSH3 indeed 
benefited more from chemotherapy according to 
clinical efficacy (Figure 8C). The analysis of GSE28702 
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also showed that CHS3 had the highest response rate 
to FOLFOX (Figure S16B). Together, these results 
indicate that this taxonomy is valuable in guiding 
clinical medication. 

Prediction of novel drugs and cell validation 
Using the cMap database, we identified five 

potent drugs for CHS1 and CHS3, and analyzed the 
correlations between the drugs and key genes (Figure 

S16C). To test the efficacy, we treated CRC cell lines 
belonging to the different CHSs with the drugs, 
except for masoprocol, which was unavailable. The 
classification results for the cell lines are listed in 
Table S4. We selected LS180, HT29, and HCT116, 
SW620 cells to represent CHS1 and CHS3, 
respectively. The expression of representative key 
genes between CHS1 and CHS3 cells is differential at 
transcription levels and protein levels (Figure 

 

 
Figure 6. Classic biological characteristics of CHSs in pan-cancer. A. The characteristic of cuproptosis and hypoxia among CHSs in pan-cancer. B. The features of 
hallmarks of each subtype in representative cancer. C. The metabolic profile among CHSs in representative cancer.  
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S17A-B). The IC50 results showed that most drugs 
had a strong cell-killing effect on CRC cells, except 
forskolin, pazopanib, and MK-0752 (Figure S18). 
Among the remaining drugs, most IC50s for cell lines 
were consistent with the predicted tendency-- the 
sensitive drugs for CHS3 had lower IC50 values in 
HCT116 and SW620, and the sensitive drugs for CHS1 
showed the opposite trend (Figure 8D). The transwell 
assay revealed that most drugs had an effective and 
differential impact on the migration of the two cell 
subtypes (Figure 8E,F). The drugs sensitive to CHS3 
weakened the migration ability of HCT116 and 
SW620 to a greater extent. Colony formation 
presented a similar trend (Figure 8G, H). Generally, 
masitinib had more obvious effects on the 
proliferation, migration, and survival of CHS1 cells, 
suggesting that masitinib might have an unexpected 
anti-tumor effect in CHS1. Similarly, simvastatin was 
administered to CHS3. 

Prognostic value of the clustering  
The survival analysis of the training set showed 

that the outcomes of the CHSs were significantly 
different. CHS1 had the best prognosis, whereas 
CHS3 had the worst (Figure 8I). The same survival 
trend was observed in the validation set (Figure 8J). It 
was also consistent with the indication of Braf 
mutation (Figure 2B). 

We constructed a prognostic model based on the 
prognostic differences between CHS1 and CHS3. The 
details of the model were provided in Table S6. 
Patients with higher scores had a poorer prognosis 
than their counterparts (Figure S16D). In addition, we 
built a nomogram with the model for clinical 
application (Figure S16E). The areas under the curves 
of the time-dependent ROC curves at 1, 3, and 5 years 
were 0.8, 0.8, and 0.81, respectively (Figure S16F). 
Finally, we constructed calibration curves to test the 
consistency of the predictive survival probability and 
actual information (Figure S16G). Both the ROC and 
calibration curves validated the good predictive 
performance of the model. 

Discussion 
A robust classifier is valuable for precision 

medicine and improving prognosis because of the 
heterogeneity and prognostic disparity of cancers. 
Since the unique mechanism of cuproptosis has been 
reported, several studies have investigated its 
correlation with multiple cancers [54-56]. Considering 
the relationship between cuproptosis and hypoxia, it 
is important to explore their role in classifying CRC 
and pan-cancer to guide clinical application. 

In this study, we identified three distinct 
subtypes based on cuproptosis and hypoxia using 

TCGA_COADREAD as the training set and validated 
it in single-cell and bulk validation sets. CHS1 is 
characterized by high sensitivity for cuproptosis, low 
degree of hypoxia, active metabolism, poor immune 
infiltration, less fibrosis in the TME, and the best 
prognosis among the CHSs. In contrast, CHS3 is 
characterized by low sensitivity for cuproptosis, high 
degree of hypoxia, relatively inactive metabolism, 
abundant immune infiltration, more fibrosis in the 
TME, and poor prognosis. The characteristics of CHS2 
are intermediate. Heterogeneity is a fundamental 
feature of cancers [57]. Thus, we applied this 
classification to pan-cancers and surprisingly found 
that it enabled to classify most samples into three 
distinct clusters. 

The results indicated that CHS1 might be more 
sensitive to cuproptosis inducers. CHS3 of CRC might 
have a higher response rate to classic drugs, according 
to the analysis of transcriptomics and organoids. 
Although hypoxia is responsible for resistance to 
several chemotherapeutic drugs [57, 58], and confers 
tumor cells the ability to activate pleiotropic 
mechanisms for survival [9]. The good response of 
CHS3 might be due to the much higher expression of 
targeted genes, although their degree of hypoxia is 
more severe. Combining the results from databases 
and assays, masitinib and simvastatin might have 
specific effects on CHS1 and CHS3 in CRC, 
respectively. As a predominant microbiota in CRC, 
F.n influences tumorigenesis, proliferation, angioge-
nesis, and chemoresistance of CRC by affecting TME 
and multiple signaling pathways [60,61]. The analysis 
of F.n demonstrated that its differential richness might 
be responsible for the differences among CHSs. 
Additionally, we constructed a prognostic model and 
a ceRNA network for CRC to provide a reference for 
prognostic prediction and ncRNA research. 

Cuproptosis and hypoxia are closely related to 
metabolism [5, 62], and our study demonstrated that 
the metabolism of most substances, including the 
TCA cycle and lipoic acid, was more active in CHS1. 
The TCA cycle is pivotal for aerobic respiration [63]. 
Severe hypoxia accompanying lower TCA cycle is 
consistent with the physiology. Analysis of the 
hallmarks indicated a stronger malignancy in CHS3. 
The insensitivity of CHS3 to cuproptosis may allow 
higher Cu levels in physiological state, which creates a 
favorable niche for proliferation, metastasis and 
angiogenesis [64-66]. Moreover, hypoxia promotes a 
bias toward metastasis and stemness [67, 68]. 
Therefore, we speculate that low sensitivity for 
cuproptosis and high-degree hypoxia may synergis-
tically account for the active proliferation and 
metastasis in CHS3. 
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Figure 7. The immune landscape among 3 CHSs in pan-cancer. A. The results of GSEA analysis on proliferation, angiogenesis, invasion, stemness, and immune in 
pan-cancer. B. The abundance of immune cells by TIMER in representative cancer. ∗, p<0.05; ∗∗, p<0.01; ∗∗∗, p<0.001. C. The correspondence between CHS and Fges 
classification in representative cancer.  
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Figure 8. Clinical application of the clustering. A. The expression of targeted molecules of chemotherapeutic drugs. B. The IC50 of fluorine, SN38 and oxaliplatin in 
organoids. C. The MRI images of patients belonged to CHS1 and CHS3. MRI, magnetic resonance imaging; PR, partial response; CR, complete response. D. The IC50 of the drugs 
for colorectal cells. *, the assay results were consistent with the prediction of the cMap database. #, the unit is nm. E. The representative images of transwell assay. NC, normal 
control. F. The result of transwell assay for CRC cell lines with screened drugs. NC, normal control. G. The representative images of colony-formation. NC, normal control. H. 
The results of colony-formation for CRC cell lines with screened drugs. NC, normal control. I.J. Kaplan−Meier plot for 3 CHSs in training set and GSE39582, respectively. 
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Prior researches have shown a close relationship 
between cuproptosis and tumor immunity [55, 69, 70]. 
Alterations in the immune profile always occur when 
tumors experience hypoxia, such as T-cell dysfunc-
tion, tumor-associated macrophages recruitment, and 
increased ICB resistance [71 - 73]. Our analysis of TME 
revealed that immune infiltration in CHS3 was the 
most abundant, including anti-tumor cells, MDSCs, 
and CAFs. Given the impactful immunosuppressive 
function of MDSCs and CAF [74], even if the immune 
infiltration of CHS3 was more abundant, the function 
of tumor suppression and immune killing was not 
necessarily superior to that of the other two subtypes.  

As a major type of immunotherapy, ICBs have 
provided hope to patients once considered incurable. 
Multiple ICB drugs have been approved by the FDA 
[75]. The highest level of ICB expression in CHS3 
indicates the potential for ICB therapy in these 
patients. Also, the fibrosis of TME in CHS3 was the 
highest. Therefore, we assume that the high 
infiltration of immunosuppressive cells, high fibrosis 
of the TME and high ICB expression inhibited 
immune surveillance and killing in CSH3, leading to 
poor prognosis. Bagaev et al. revealed that the more 
severe fibrosis of the TME, the worse ICB effect. Given 
the adverse effects of fibrosis and hypoxia on ICB 
treatment [71, 76], improving fibrosis and hypoxia in 
the TME should be a prerequisite for the maximum 
efficacy of ICB in CHS3. Anti-TGF-β is one of general 
approaches to improve fibrosis in the TME [77]. 
TGF-β expression greatly increases under severe 
hypoxic condition [78]. It plays a vital role in cancers 
under hypoxia, actively participating in the regulation 
of TME. The TGF-β signaling synergizes with hypoxia 
to exert profound effects on extracellular matrix 
remodeling, promote tumor bone metastases, and 
modulate EMT in various cancers [79]. Considering 
the synergy of hypoxia and TGF-β, combining anti- 
TGF-β drugs (e.g., vactosertib) and immunotherapy 
probably achieves surprising effects in CHS3. 

Although our study provides a robust 
classification algorithm based on cuproptosis and 
hypoxia with a multi-omic analysis of CRC, which is 
applicable to pan-cancer, two major drawbacks still 
require further exploration. First, survival differences 
between the three subtypes for most tumors in 
pan-cancer were not as significant as those in CRC, 
suggesting that more factors must be considered for 
predicting their prognosis. Second, the treatment of 
pan-cancers was not explored due to incomplete 
information.  

In conclusion, we performed a multi-omic 
analysis of CRC based on cuproptosis and hypoxia, 
classifying patients into three well-characterized 
subtypes. The subtyping algorithm is applicable to 

pan-cancers, and the general biological processes and 
immune profiles of each CHS are similar in 
pancancers. For CRC, chemotherapy and targeted 
therapy are more effective in CHS3, and improving 
hypoxia may further promote these effects. CHS3 may 
benefit greatly from ICB therapy under anti-fibrosis 
and anti-hypoxia conditions for most pan-cancer 
cases. 
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