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Abstract 

Tight junction (TJ) is the barrier of epithelial and endothelial cells to maintain paracellular substrate 
transport and cell polarity. As one of the TJ cytoplasmic adaptor proteins adjacent to cell membrane, 
zonula occludens (ZO) proteins are responsible for connecting transmembrane TJ proteins and 
cytoplasmic cytoskeleton, providing a binding platform for transmembrane TJ proteins to maintain the 
barrier function. In addition to the basic structural function, ZO proteins play important roles in signal 
regulation such as cell proliferation and motility, the latter including cell migration, invasion and 
metastasis, to influence embryonic development, tissue homeostasis, damage repair, inflammation, 
tumorigenesis, and cancer progression. In this review, we will focus on the signal regulating function of 
ZO proteins in inflammation and tumorigenesis, and discuss the limitations of previous research and 
future challenges in ZO protein research. 
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Introduction 
In the course of biological evolution from single 

cell to multicellular organism, intercellular junctions 
appear and play crucial roles in various complicated 
and ordered biological processes. There are three 
categories of intercellular junctions: occluding 
junction, anchoring junction and gap junction. Each 
cell junction serves its function individually or 
communicate mutually to work together. 

Occluding junction consists of tight junction and 
septate junction, two structure and function 
conserved junctions with some location and 
interactive partner variations in different species [1]. 
Tight junction (TJ) exists in vertebrates including 
humans and mice and locates at cellular apical side. 
However, septate junction of invertebrates such as 
Drosophila melanogaster and Caenorhabditis elegans 
locates at subapical side below adherens junction [2, 
3], one category of anchoring junction, indicating that 
biological evolution is diverse but conservative. 

TJ proteins are divided into two sorts according 
to their cellular location. One is transmembrane 

proteins comprising claundins, MARVEL domain 
proteins, junctional adhesion molecules (JAMs) and 
blood vessel epicardial substance (BVES), and the 
other is cytoplasmic adaptor proteins including ZO 
proteins, cingulin and membrane-associated guany-
late kinase inverted (MAGI) proteins. Barrier 
function, the basic structural function of TJ, is 
accomplished by the cooperation of transmembrane 
proteins and adaptor proteins. Besides, TJ proteins 
participate in signal transduction to influence cell 
biological behaviors. Here we introduce ZO proteins, 
one of TJ adaptor proteins, from the respect of their 
structure and function, especially signal regulating 
roles, in physiological and pathological processes. 

ZO protein structure, basic function and 
functional redundancy 

 As cytoplasmic adaptor proteins, ZOs play a 
basic role in connecting transmembrane TJ proteins 
and cytoplasmic cytoskeleton to maintain TJ barrier 
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function. However, functional redundancy exists 
among ZO proteins as a result of their structural 
similarity. In this part, we briefly introduce ZO 
protein structure and basic function, and discuss their 
redundant and non-redundant roles under different 
environments. 

Structure and basic function 
ZO proteins, comprising ZO-1, ZO-2 and ZO-3, 

belong to TJ protein families located in cytoplasm 
adjacent to cell membrane. They and other adaptor 
proteins constitute protein plaques to provide stable 
scaffolds for numerous proteins including transmem-
brane TJ proteins, maintaining the barrier function: 
One is the “gate function”, which controls the 
paracellular transport of ions and solutes; and the 
other is the “fence function”, which prevents substrate 
mixture of the apical side and the basolateral side of 
one cell to keep cell polarity [4]. ZO proteins are also a 
member of membrane-associated guanylate kinase- 
like (MAGUK-like) protein families, mainly 
containing three PDZ (postsynaptic density protein 
95, discs large, ZO-1) domains, one SRC homology 3 
(SH3) domain and one inactivated Guanylate kinase 
(GUK) domain from the amino terminus to the 
carboxyl terminus [1], which are crucial for the 
structural and the signal regulating functions of ZO 
proteins. 

ZO proteins are indispensable for cell membrane 
localization and function of transmembrane TJ 
proteins. Although the ZO-1 knockout mouse 
mammary epithelial cell line EpH4 can also form 
integral TJ, the formation speed slows down [5]. A 
similar phenomenon of TJ formation delay has been 
observed in the ZO-1 knockdown canine kidney 
epithelial cell line MDCK [6]. Further research found 
that a large number of TJ proteins lost their membrane 
localization after simultaneously inhibiting ZO-1 and 
ZO-2 expressions [7, 8], which elicited enhanced 
paracellular permeability and therefore deregulated 
gate function [6, 8, 9]. In the ZO-1 knockout MDCK II 
cell line, a monoclonal cell line of MDCK cells, subtle 
ZO-1 overexpression rescued deregulated TJ mem-
brane localization, indicating that low level of ZO-1 is 
enough to maintain TJ formation and function [10]. 
Although previous studies have proved that TJ is 
closely correlated with cell polarity [11, 12] and 
deficiency of all three ZO proteins triggered abnormal 
gate function in epithelial cells, however, cell polarity 
was not changed as expected [7, 8]. As a consequence, 
which molecules are essential for cell polarity 
formation and maintenance remains to be further 
studied. 

Functional redundancy and non-redundancy 
 The function among ZO proteins exists 

redundancy due to their structural similarity. For 
example, in ZO-1 and ZO-2 simultaneously inhibited 
EpH4 cells, overexpression of either ZO-1 or ZO-2 
rescued deregulated TJ membrane localization [7]. In 
addition, Beutel et al. explained the functional 
redundancy of ZO-1 and ZO-2 from the aspect of 
phase separation [9]. They found that most reported 
ZO binding proteins such as TJ proteins, cytoskeleton 
proteins and transcription factors enriched with ZO 
proteins through phase separation, and subsequent 
composition analysis of binding proteins suggested 
high similarity between ZO-1 and ZO-2, reminding 
their functional redundancy. 

 In contrast, lots of evidence proves the existence 
of non-redundant role of ZO proteins. In vitro assays 
reported that overexpression of ZO-2 could not rescue 
the TJ formation speed of the ZO-1 knockout EpH4 
cells [5]. Moreover, inhibition of ZO-1 rather than 
ZO-2 in MDCK cells promoted the paracellular 
permeability of larger molecules and changed cell 
morphology [6]. In vivo assays provide more powerful 
support of the non-redundant roles of ZO proteins: 
First of all, the tissue distribution of ZO proteins is 
specific. Even if ZO-1 and ZO-2 are comprehensively 
distributed on the apical side of lateral membrane of 
epithelial and endothelial cells, ZO-3 does not exist in 
endothelial cells [13-15]. In addition, the special 
structure of heart “intercalated disc” expresses only 
ZO-1 rather than ZO-2 or ZO-3. ZO-1 conditional 
knockout in mouse heart induced loss of gap junction 
protein connexin 40 (Cx40), leading to atrioventricular 
block [16]. In testis, liver and inner ear ZO-2 gene 
mutation alone causes severe organ dysfunction [17]. 
Moreover, either ZO-1 or ZO-2 individually knockout 
resulted in mouse abnormal embryonic development 
and embryonic lethality [18, 19]. Though the 
embryonic development and tissue morphology were 
not affected in ZO-3 knockout mouse, however, ZO-3 
knockout zebrafish induced improved embryonic 
sensitivity to osmotic pressure and epithelial 
permeability, contributing to abnormal embryonic 
development and embryonic lethality [19-21]. 

 It should be noted that the research conclusions 
above are all under physiological conditions without 
external stimulus. Recent research has shown that ZO 
proteins exert extra non-redundant roles under stress, 
which cannot be detected in ordinary environment. 
For instance, the arrangement of cytoskeleton actin 
and microvilli of ZO-1 knockout mouse intestine only 
changed slightly [22]. However, under chemical or 
immune injuries, the mucosa of ZO-1 knockout 
intestine was disrupted severely. Both in vitro and in 
vivo assays demonstrated that loss of ZO-1 restrained 
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intestinal cell proliferation and promoted cell 
apoptosis. Mechanistically, ZO-1 bound centrosomes 
and induced correct spindle split direction in 
proliferating cells. Another study found ZO-2 
knockout mouse liver appeared mild dysfunction and 
the barrier function of bile duct was not influenced 
[23]. But under the stimulus of bile acid, the ZO-2 
knockout liver was injured severely, which is possibly 
caused by the bile acid transport and detoxification 
inability of the liver. In addition, the research 
mentioned above that ZO-3 had a crucial role in 
zebrafish rather than mouse embryonic development 
can be explained by different stresses the two species 
face: Mammals living on land have only around 20 
claudin genes, while teleost fish living in water with 
more paracellular barrier stress has around 60 claudin 
genes [24]. In summary, ZO proteins have common 
redundant roles and distinct specific non-redundant 
roles. 

Signal regulating function of ZO proteins 
In addition to the basic function of ZO proteins, 

they also bind various signal regulating proteins 
including transcription factors and protein kinases to 
participate in cellular signal transduction. Exploration 
of ZO protein signal regulating function will 
complement their roles in physiological and 
pathological processes. 

Phenomenon of nucleus-membrane shuttling 
 Parts of MAGUK-like proteins including all 

three ZO proteins have several both nuclear 
localization signals and nuclear export signals, hence 
theoretically they have the ability of moving into and 
out of nucleus [25]. The cellular localization alteration 

of ZO proteins probably affects the localization of 
their binding partners and subsequently influences 
cell signal transduction. To study the 
nucleus-membrane shuttling of ZO proteins facilitates 
us to understand the mechanisms of their signal 
regulating function (Table 1). ZO-1 is the first ZO 
protein to be reported owning the ability of 
nucleus-membrane shuttling [26]. Gottardi et al. found 
that cell density or confluency was crucial for ZO-1 
cellular localization in epithelial cells. ZO-1 located in 
the nucleus of subconfluent cells, while it was 
transported out of nucleus to membrane with the rise 
of cell density. Afterwards, Islas et al. found similar 
cellular localization behavior of ZO-2 [25]. One 
difference between ZO-1 and ZO-2 was that ZO-2 
nuclear localization could also be observed in some 
confluent cells, illustrating possible functional 
difference between them. Nevertheless, to our 
knowledge, any imaging evidence of ZO-3 
nucleus-membrane shuttling has not been observed, 
even ZO-3 was detected in nuclear proteins [27]. 
Moreover, Balda et al. indicated that they could not 
repeat the ZO-1 nuclear localization phenomenon 
though applying the same cell line and protein 
detection methods of previous studies [28]. Actually, 
some studies have demonstrated that in confluent 
cells, the nuclear ZO protein levels are far lower than 
those of total ZO proteins [25, 26], which may cause 
the false negativity of ZO protein nuclear signal 
because it may be covered by membrane signal. As a 
result, more advanced technological approaches are 
necessary for the studying of ZO protein 
nucleus-membrane shuttling. 

 

Table 1. Regulation of cell proliferation and motility by ZO proteins 

1. Cell proliferation regulation 
ZO proteins Protein source Cell localization Binding proteins Effector proteins Effect Cell identity Reference 
ZO-1 Exogenous Membrane ZONAB cyclin D1, PCNA Inhibition Epithelial [28-30] 
ZO-2 Exogenous Nucleus C-Myc cyclin D1, PCNA Inhibition Epithelial [31] 

Exogenous Nucleus GSK3β cyclin D1 Inhibition Epithelial [32, 33] 
Exogenous Membrane, nucleus AP-1 - Inhibition Epithelial [34, 35] 

ZO-1 or/and ZO-2 Endogenous Membrane - - None Epithelial [5, 7, 42] 
ZO-3 Endogenous Membrane - cyclin D1 Promotion Epithelial [36] 
2. Cell motility regulation 
ZO proteins Protein source Cell localization Binding proteins Effector proteins Effect Cell identity Reference 
ZO-1 Endogenous Membrane α, β, γ-catenins - Inhibition Epithelial [44, 45] 

Endogenous Membrane N-cadherin - Promotion Mesenchymal [46] 
Endogenous Membrane Integrin α5β1 - Promotion Mesenchymal [47] 
Endogenous Membrane PLP2 RAC1 Promotion Mesenchymal [48] 
Exogenous Cytoplasm - β-catenin signaling Promotion Epithelial [51] 
Endogenous/Exogenous Cytoplasm - β-catenin signaling, MMP14 Promotion Mesenchymal [52] 
Endogenous/Exogenous Cytoplasm - IL-8 Promotion Mesenchymal/ 

Epithelial 
[54] 

ZO-2 Endogenous Cytoplasm - MMP14 Inhibition Mesenchymal [53] 
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Cell proliferation regulation 
 ZO proteins influence cell proliferation through 

nucleus-membrane shuttling and regulating cell cycle 
related proteins such as cyclin D1 and proliferating 
cell nuclear antigen (PCNA). ZO-1 mainly inhibited 
cell proliferation by binding transcription factor 
ZO-1-associated nucleic acid-binding protein 
(ZONAB) with its SH3 domain [28]. ZONAB 
promoted the transcriptions of cell cycle related 
proteins cyclin D1 and PCNA by binding directly 
their promoters [28, 29]. In addition, ZONAB 
accelerated cell cycle progression by combining with 
cyclin dependent kinase 4 (CDK4) and cyclin D1 
facilitating them to get into nucleus [30]. 
Consequently, when cell density is high, membranous 
ZO-1 sequester ZONAB in cytoplasm suppressing its 
nuclear localization, which inhibits cell proliferation. 
In contrast, when cell density is low, little mem-
branous ZO-1 cannot sequester ZONAB effectively 
and cell cycle progresses normally. Similar to ZO-1, 
ZO-2 also mainly inhibits cell proliferation. 
González-Mariscal indicated that exogenous ZO-2 
inhibited cell proliferation through collaborating with 
C-Myc and histone deacetylase 1 (HDAC1) in nucleus 
to form transcription regulatory complex, which 
bound the cyclin D1 promoter to restrain its 
transcription [31]. Moreover, they found that ZO-2 
regulated cell cycle from the posttranslational level. 
They observed the phenomenon that ZO-2 got into 
nucleus in the late G1 phase and got out of nucleus in 
the M phase, while cyclin D1 got into nucleus in the 
early G1 phase and got out of nucleus in the late S 
phase. Exogenous ZO-2 caused the G1/S phase delay 
by stabilizing the protein kinase glycogen synthase 
kinase 3 beta (GSK3β), which phosphorylated cyclin 
D1 on threonine-286 (Thr-286) to promote its 
degradation [32, 33]. They also discovered that ZO-2 
combined with transcription factor activator protein 1 
(AP-1), which has been reported to own extensive cell 
signal regulating functions on cell proliferation, 
transformation and death, both on membrane and in 
nucleus [34, 35]. Therefore, membranous ZO-2 may 
regulate cell proliferation through sequestering AP-1 
in cytoplasm. There is little evidence and 
controversies suggesting the role of ZO-3 in cell 
proliferation. Surprisingly, cyclin D1 was observed to 
locate near cell membrane in dividing cells and bound 
with three ZO proteins in human colon epithelial cells 
[36]. Inhibition of ZO-3, rather than ZO-2, prevented 
the cyclin D1 membrane localization leading to cell 
cycle arrest, and accelerated cyclin D1 degradation in 
cells treated with protein synthesis inhibitor 
cycloheximide, which reflected the ZO-3 functional 
specificity. However, the total cyclin D1 protein level 

kept constant in cells not treated with cycloheximide, 
indicating that ZO-3 may influence only a fraction of 
cyclin D1 near cell membrane in diving cells rather 
than the entire cyclin D1 protein. Besides, the protein 
levels and the cell localization of ZO-1 and ZO-2 did 
not change after ZO-3 inhibition, excluding the 
influence of ZO-1 and ZO-2 on cyclin D1. On the 
contrary, inhibition of ZO-3 promoted cell 
proliferation in MDCK cells [37], which may be 
caused by the different characteristics of the two cell 
lines and different experimental methods. In this 
study, only one stable ZO-3 knockdown monoclonal 
cell line was selected to be utilized for experiments. 
Whereas, different monoclonal cell lines are 
heterogeneous and possibly change their features in 
the process of long-term culture. Hence it is hard to 
say that the phenotypes observed from one 
monoclonal cell line are actually induced by ZO-3. 

 Except for cell density, the expressions and the 
cell localization of ZO proteins also change under 
external stimulus. For example, the nuclear ZO-2 
protein increased without increase of the total ZO-2 
protein in the condition of chemical stimulus or heat 
shock, proving ZO-2 nuclear import [38]. Besides, in 
the cell wound scratch assay, the expressions of ZO-1, 
ZO-2 and ZO-3 decreased accompanied with ZO-1 
and ZO-2 nuclear import, and the expressions of 
cyclin D1 and PCNA improved in the cells near the 
wound [25-27, 36]. Because the ZO protein nuclear 
localization is always accompanied with stronger cell 
proliferation capacity, some researchers argue that in 
subconfluent cells nuclear ZO proteins induce cell 
proliferation, while in confluent cells membranous 
ZO proteins suppress cell proliferation [25, 36]. 
However, the theory cannot explain all phenomena. 
For instance, in some highly differentiated cells which 
have no or weak proliferation capacity, such as 
intestinal epithelial cells of the top side of villi and 
renal tubular cells, large amounts of nuclear staining 
of ZO proteins can be seen [26, 39]. Moreover, the 
studies mentioned above proved that nuclear ZO-2 
negatively regulated the cyclin D1 expression 
suppressing cell proliferation [31, 32]. Another study 
indicated that actually the nuclear ZO proteins 
increased with increased cell density [27], although 
their nuclear imaging was hard to observe. All above 
evidence opposes the theory that nuclear ZO proteins 
induce cell proliferation. In summary, it seems that all 
cells with ZO protein nuclear localization in different 
conditions, including low cell density, external 
stimulus or highly differentiated stage, undergo more 
or less survival stress. Therefore, it is supposed that 
the nuclear localization behavior of ZO proteins is 
possibly correlated with cell survival. 

 Notably, the studies of the cell proliferation 
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regulation of ZO proteins above are most based on 
exogenous ZO proteins, and some exogenous ZO 
proteins contain only partial domains but not 
full-length proteins. There may be big differences 
between supraphysiological level of proteins or 
protein fragments and physiological level of integral 
proteins. A study has shown that ZONAB could only 
bind the ZO-1 protein fragment containing SH3 
domain rather than full-length ZO-1 in vitro, and all 
three ZO proteins could not be found in the 
complexes that ZONAB bound [37]. Nevertheless, 
another study indicated that expect ZO-3, both 
full-length ZO-1 and ZO-2 could bind ZONAB in vitro 
[9]. The difference might be caused by the internal 
interaction of ZO proteins, which formed closed 
conformation to prevent the combination with other 
proteins [40, 41] and specific protein modifications or 
something else are possibly needed to expose their 
crucial binding domains. Furthermore, the cell 
proliferation regulation function of endogenous ZO 
proteins is not obvious as expected in physiological 
condition. In many epithelial cell lines, inhibition of 
neither ZO-1 nor ZO-2 or the combination of ZO-1 
and ZO-2 with distinct inhibition approaches did not 
influence cell proliferation [5, 7, 42]. However, in 
another study the combinational inhibition of ZO-1 
and ZO-2 suppressed cell proliferation, though it did 
not work to inhibit ZO-1 or ZO-2 individually [37]. 
The study indicated that ZONAB was not transported 
into nucleus after ZO-1 and ZO-2 inhibition but 
diffused or got lost in cytoplasm. These contradictory 
phenomena induced by endogenous or exogenous ZO 
proteins bring challenges to study the cell 
proliferation regulating function of ZO proteins. It 
should be considered that endogenous proteins of one 
family exist function redundancy because of their 
structural similarity. Besides, we should be cautious 
to face the conclusions from different research in 
consideration of the advantages and limitations of 
different experimental techniques.  

ZO protein function on 
epithelial-mesenchymal transition and cell 
motility regulation 

 Epithelial-mesenchymal transition (EMT) is 
essential for the progression of embryonic 
development. EMT is reactivated and plays crucial 
roles in damage repair, tissue fibrosis and cancer 
progression. In the course of EMT, epithelial cells lose 
cell junctions and cell polarity and rearrange their 
cytoskeleton leading to cell morphology alteration 
[43]. Meanwhile the cells gain better motile ability 
through reprogrammed gene expression and signal 
transduction. Epithelium derived cancer cells with 
epithelial cell features can be transformed to cells with 

mesenchymal cell features, including enhanced 
abilities of migration, invasion and metastasis. Cancer 
cell lines derived from tumors of the same tissue, such 
as primary tumors or metastatic tumors, are usually 
various and heterogeneous with different motile 
abilities. Therefore, as compared with cell lines 
derived from normal tissues, cancer cell lines may be 
more suitable for studying cell motility and its 
regulating mechanisms. 

Regulation of epithelial cells 
 In normal epithelial cells or cancer cells, 

adherens junction is essential for TJ formation, 
subsequently influencing cell motility. Rajasekaran et 
al. found that membrane localization of ZO-1 
depended on E-cadherin-mediated adherens junction 
formation [44]. In virus transfected MDCK cells, the 
E-cadherin expression was inhibited and 
membranous ZO-1 localization was lost, while the 
subsequent overexpression of E-cadherin rescued 
membranous ZO-1 localization. Mechanistically, 
catenins of adherens junction, including α-catenin, 
β-catenin and γ-catenin, combined with ZO-1 and 
facilitated its transport to membrane. Therefore, loss 
of adherens junction proteins caused by EMT may be 
one of the main reasons for abnormal membranous 
localization of tight junction proteins. The similar 
result was also observed in cancer cells: In the 
E-cadherin positive primary breast cancer cell line 
MCF-7 rather than the E-cadherin negative invasive 
breast cancer cell line MDA-MB-231, overexpression 
of insulin-like growth factor I receptor induced ZO-1 
expression and increased cell aggregation, and the 
following ZO-1 inhibition prevented the course, 
demonstrating that ZO-1 is crucial for cell aggregation 
which is dependent on E-cadherin-mediated adherens 
junction formation [45]. 

Regulation of mesenchymal cells 
 In addition to motility of epithelial cells, ZO 

proteins also regulate motility of mesenchymal cells. 
Because E-cadherin gets lost in mesenchymal cells, 
signal regulating function of ZO-1 is independent of 
E-cadherin but depends on other junctional proteins, 
such as mesenchymal cells specific N-cadherin [46] or 
rearranged integrins [47]. In melanoma cells ZO-1 
bound N-cadherin to enhance not only adherence and 
invasive ability of cancer cells, but also adherence 
ability between cancer cells and fibroblasts [46]. In 
subconfluent or scratched wounded cells of invasive 
lung cancer or breast cancer, ZO-1 was observed to 
co-localize with integrin α5β1. After ZO-1 
phosphorylation by protein kinase C epsilon (PKCε), 
ZO-1 combining with integrin α5β1 was transported 
to the leading edge of cell membrane to guide cell 
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migration, contributing to stronger cell invasive 
ability [47]. Notably, the ZO-1 leading edge 
localization was just found in confluent cells, 
suggesting localization conservation of ZO-1 
according to cell density. The similar leading edge 
localization of ZO-1 occurred in invasive colorectal 
cancer cells undergoing collective cell migration [48], 
a feature of invasive or metastatic cancer cells, which 
means that a group of mutually connected cells 
migrates to a direction as one unit without losing their 
cell junction [49]. The study found that in invasive 
colorectal cancer cells, a colonic epithelium-enriched 
transmembrane protein PLP2 recruited ZO-1 to the 
leading edge of cell membrane and induced 
cytoskeleton actin remodeling to initiate collective cell 
migration. 

Cell motility regulation through the β-catenin signaling 
pathway 

 The β-catenin signaling pathway plays 
indispensable roles in various biological processes, 
including EMT and cell motility [43, 50]. Some 
research has shown that ZO proteins influence cell 
motility through regulating the β-catenin signaling 
pathway. Reichert et al. illustrated that overexpression 
of the ZO-1 protein fragment containing only PDZ 
domains diffused in cytoplasm but not be transported 
to membrane [51]. Mechanistically, the ZO-1 protein 
fragment promoted EMT and carcinogenesis in vivo 
by activating the β-catenin signaling pathway. 
Because the β-catenin signaling pathway is always 
dysregulated in cancer cells, ZO-1 protein mutants 
may induce cancer initiation and progression. Similar 
cytoplasmic localization of ZO-1 could be also found 
in invasive breast cancer cells, while ZO-1 located on 
cell membrane in primary breast cancer cells [52]. The 
researchers found that cytoplasmic ZO-1 improved 
cancer cell invasive ability through enhancing the 

expression of matrix metalloproteinase 14 (MMP14/ 
MT1-MMP), which was associated with activated the 
β-catenin signaling pathway. They also indicated that 
both the ZO-1 protein fragment containing only PDZ 
domains and integral full-length ZO-1 protein could 
activate the β-catenin signaling pathway in invasive 
breast cancer cells, suggesting the functional 
differences of ZO-1 between normal epithelial cells 
and cancer cells. Afterwards they also found that 
ZO-2 had the same cytoplasmic localization in 
invasive lung cancer cells [53]. However, ZO-2 
inhibited the MMP14 expression and suppressed 
ability of cell invasion, suggesting the non-redundant 
functions of ZO-1 and ZO-2 in cancer cells. In addition 
to MMP14, IL-8 was also highly expressed in invasive 
breast cancer cells as compared with primary breast 
cancer cells [54]. In primary breast cancer cells, 
overexpression of ZO-1 could enhance the 
transcription of IL-8 and ability of cell invasion, 
however, the course was independent of β-catenin 
signaling pathway, manifesting different signal 
regulating mechanisms between primary and 
invasive cancer cells with different ability of invasion. 

 According to the studies above, a hypothesis is 
proposed: The influence of ZO-1 on cell motility 
depends on cell identity. In cells with epithelial 
characteristics, ZO-1 prefers to inhibit cell motility; in 
contrast, in cells with mesenchymal characteristics, 
ZO-1 prefers to promote cell motility through binding 
transmembrane proteins or affecting cell signaling 
(Figure 1). If the hypothesis is true, it will provide 
reference value for clinical therapy and prognosis 
estimation of patients with different cancer stages. 
However, nearly all studies on the relationship of cell 
motility and ZO proteins just focus on ZO-1, whether 
ZO-2 or ZO-3 regulates cell motility remains further 
research. 

 

 
Figure 1. Model for cell motility regulation by ZO-1 during EMT. In the course of EMT, epithelial cells lose cell junctions and cell polarity and rearrange their 
cytoskeleton to gain better motile ability. A hypothesis is proposed that in cells with epithelial characteristics ZO-1 prefers to inhibit cell motility, while in cells with mesenchymal 
characteristics, ZO-1 prefers to promote cell motility through binding transmembrane proteins or activating the β-catenin signaling. 
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Figure 2. ZO-1 signaling in intestinal inflammation and tumorigenesis. In DSS/TNBS-induced intestinal inflammation or AOM/DSS-induced intestinal tumorigenesis, 
ZO-1 gets lost accompanied with severe infiltration of various immune cells. Mechanistically, inflammatory activated NF-κB replaces CREB of the CREB-CBP protein complex, 
which has been proved to promote ZO-1 transcription, forming the NF-κB-CBP complex to repress ZO-1 expression. In turn, loss of ZO-1 aggravates inflammatory damage and 
accelerates the pathological processes. 

 

ZO proteins in pathological processes 
In various pathological processes such as 

inflammation, tumorigenesis, cancer progression and 
other diseases, cell identities or states change under 
external of internal stimuli, usually accompanied with 
alterations of quantity, category or binding partners of 
cell junction proteins. Understanding the change rules 
of ZO proteins in these processes possibly helps us 
better diagnose and treat patients. 

ZO proteins in inflammation 
Up to now, it has been repeatedly proved that 

ZO proteins diffuse or get lost in nearly all types of 
inflammations comprising colitis [55-62], pancreatitis 
[63, 64], acute radiation cystitis [65], atopic asthma 
[66], pleurisy [67], allergic conjunctivitis [68] and so 
on. For example, in dextran sulfate sodium (DSS) or 
trinitrobenzene sulphonic acid (TNBS) induced 
mammary colitis models (Figure 2), the ZO-1 
expression level of colon epithelia decreased quickly 
even on the first day [55, 57, 58]. Similar results were 
also observed in pancreatic ductal cells in 
caerulein-induced mammary pancreatitis [63, 64].  
ZO proteins are mainly regulated by nuclear factor 
kappa B (NF-κB) signaling pathway [59, 62, 69] and 
cytokines including tumor necrosis factor-alpha 
(TNF-α) [60, 67], interleukin 1 beta (IL-1β) [60], IL-6 
[61], IL-8 [70], IL-9 [68], IL-22 [71] and IL-33 [68]. 
Zhang et al. found that in patients with inflammatory 

bowel disease (IBD), the expression level of 
monocarboxylate transporter 4 (MCT4) increased 
significantly [61]. Overexpression of MCT4 in vitro 
disrupted intestinal barrier function via inhibiting 
ZO-1 expression while promoting IL-6 expression. 
Mechanistically, MCT4 facilitated the formation of 
NF-κB-CBP (cAMP-response element binding protein 
(CREB) binding protein) transcription factor complex, 
therefore preventing the binding of CREB and CBP, 
the combination of which has been demonstrated to 
play a central role in transactivation of ZO-1 [72-74]. 
Another research showed that the NF-κB activity was 
influenced by a transcription factor forkhead box o4 
(Foxo4) in vivo, which reduced in the model of 
TNBS-induced colitis or in IBD patients [59]. Foxo4 
bound with NF-κB and inhibited its transcriptional 
activity for lots of cytokines such as TNF-α, 
interferon-gamma (IFN-γ), IL-1β and IL-6. Foxo4 
knockout mice resulted in increased intestinal 
epithelial permeability and sensitivity to TNBS- 
induced inflammation, and down-regulation of ZO-1 
and claudin-1. 

Some other factors such as microbes and 
neurotrophic factors can also regulate the ZO protein 
expression. Prebiotic modulation in obese and 
diabetic mice under the stimulus of carbohydrate 
promoted intestinal epithelial secretion of glucagon 
like peptide-2 (GLP-2), a proglucagon-derived 
peptide, which protected the intestinal barrier and 
prevented the disruption of TJ proteins including 
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ZO-1 and occluding [75]. In addition, glial-derived 
neurotrophic factor (GDNF) secreted by intestinal 
glial cells could ameliorate DSS-induced colitis 
through increasing the ZO-1 expression and 
inhibiting cell apoptosis and cytokines such as TNF-α 
and IL-1β [60]. Therefore, we can conclude that ZO 
proteins are closely associated with inflammation. ZO 
proteins and proinflammatory factors probably 
influence reciprocally. 

ZO proteins in tumorigenesis and cancer 
progression 

It has been shown that oncogenic viruses 
including adenovirus and human papillomavirus can 
directly bind the PDZ domains of ZO proteins, 
therefore inducing protein degradation [76, 77]. 
Besides, ZO proteins have highly homologous 
structures with another MAGUK-like protein Dlg, 
which has been shown acting as tumor suppressor 
[78], so ZO proteins are also believed to act as tumor 
suppressors in cancer.  

Although the research on the relationship of ZO 
proteins and tumorigenesis is very limited, the 
conclusion is surprisingly consistent that ZO proteins 
get lost in the course of tumorigenesis [58, 79-84]. The 
mostly used model suggesting their relationship is 
colitis-associated colorectal cancer, which can be 
induced by the combination of DSS and 
azoxymethane (AOM), and the expression level of 
intestinal epithelial ZO-1 reduces as compared with 
that of normal colon epithelium [58, 82-84]. Liu et al. 
observed that in the mice with adenomatous 
polyposis coli (Apc) gene mutation which can develop 
intestinal tumors spontaneously, intestinal mucosa 
was damaged severely accompanied with increased 
tumor numbers and the loss of ZO-1 under the 
stimulation by deoxycholic acid [81]. Furthermore, 
similar results were found in the course of bladder 
epithelial tumorigenesis of the phosphatase and 
tensin homolog (Pten) and serine/threonine kinase 11 
(Stk11) double gene knockout mice [80]. Another 
study showed that ZO-1 located at cell membrane in 
normal oral mucosa epithelial cells. However, in the 
cells of dysplasia or tumorigenesis, the ZO-1 
expression increased and ZO-1 was transported into 
nucleus [85]. The immune staining indicated that the 
proportion of ZO-1 positive cells was far more than 
the Ki67 positive proliferating cells, suggesting that 
the ZO-1 nuclear localization is not completely 
correlated with cell proliferation regulation again. 
However, the staining pattern specificity of ZO-1 
remains to be testified because to our knowledge the 
extensive ZO-1 nuclear staining in pathological 
tissues has not been observed in any previous studies. 
The author saw the similar ZO-1 shuttling as previous 

studies in oral squamous carcinoma cell lines, but the 
difference was that ZO-1 diffused in cytoplasm rather 
than was transported to membrane in confluent cells 
[85]. 

ZO proteins influence cancer progression under 
complicated and disordered background of cancer 
cells. Many studies indicated loss of ZO proteins 
during cancer progression was always correlated with 
poorer prognosis [53, 86-91]. However, on the 
contrary, in some cases high ZO protein levels 
accelerated cancer progression [46-48], suggesting 
that ZO proteins probably play different roles in 
different cancers or different stages of cancer 
progression. For instance, ZO-1 inhibition restrained 
oral squamous carcinoma cell proliferation and 
invasion [85], while improved cell proliferation and 
invasion capacity of endometrial cancer [92], liver 
cancer [93] and pancreatic cancer [94]. 
Mechanistically, in pancreatic cancer, zinc transporter 
protein 4 (ZIP4) was highly expressed and inhibited 
ZO-1 and claudin-1 expressions by regulating a 
mesenchymal cell marker zinc finger E-box binding 
homeobox 1 (ZEB1), which bound directly to the 
promoters of ZO-1 and claudin-1 and repressed their 
transcriptions. Inhibition of ZIP4 elevated the 
expression levels of ZO-1 and claudin-1 and the 
phosphorylation levels of focal adhesion kinase (FAK) 
and Paxillin, two molecules related with cell adhesion 
and motility, while subsequent silence of ZO-1 or 
claudin-1 rescued the phosphorylation levels and the 
phenomena of attenuated cell proliferation and 
invasion. The controversies of cancer cell biological 
regulation by ZO proteins maybe explained through 
complicated and heterogeneous signal regulating 
backgrounds of different cancer cells. 

ZO proteins in other diseases 
Until now, it has been ZO-2 rather than ZO-1 or 

ZO-3 that is closely related with other human 
diseases, especially for familial genetic diseases [17]. 
For instance, familial intrahepatic cholestasis is often 
observed in children whose ZO-2 gene get lost due to 
truncating mutations [95-98]. Bile of the patients does 
not flow through the intrahepatic ducts of the liver 
and some of them will develop chronic cholestatic 
hepatitis with cirrhosis and hepatocellular carcinoma 
in the late stage of the disease. Another familial 
disease, familial hypercholanemia, is a rare disease 
characterized by elevated serum bile acid 
concentration, pruritus, and fat malabsorption. In 
several Amish patients, the missense mutation V48A 
in the PDZ1 domain of ZO-2 reduced its stability and 
binding ability to claudins. In some individuals, the 
mutation of both ZO-2 and bile acid-CoA:amino acid 
N-acyltransferase (BAAT) could result in more severe 
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structural damage and affected bile acid transport and 
circulation [99]. In addition, the missense mutation of 
ZO-2 can also lead to autosomal dominant 
non-syndromic hearing loss [100, 101]. Xu et al. found 
that the adult male ZO-2 knockout chimera mice 
showed reduced fertility and pathological changes in 
the testis whose blood-testis barrier was disrupted 
[99], while whether ZO-2 plays a similar role in 
humans remains unclear. 

Perspectives and challenges 
 ZO proteins play crucial roles in embryonic 

development, tissue homeostasis, damage repair, 
inflammation, tumorigenesis, cancer progression and 
other diseases. The structural function provides 
guarantee for barrier function of TJ, and the signal 
regulating function influences cell proliferation and 
motility through taking part in signal transduction. 
Nevertheless, what we have mastered is mainly the 
structural function and studies on the signal 
regulating function are limited. Therefore, compre-
hensively studying the signal regulating function of 
ZO proteins will help us better understand various 
biological processes. But before this, we have to 
overcome the following challenges. 

 The first challenge is that the functional 
redundancy of ZO proteins brings us difficulty to 
study one ZO protein individually. Previous research 
has reminded us that generally there are no obvious 
phenotypes by interfering only one ZO protein in 
physiological condition. In addition, the function of 
exogenous ZO proteins cannot represent the actual 
function of endogenous ZO proteins due to their 
differences of protein structures, expression levels 
and cell localization, severely obstructing our studies 
on the function of ZO proteins. Fortunately, the 
functional redundancy seems not obvious under 
stress, perhaps because each ZO protein participates 
in more complicated signal regulating processes and 
they cannot substitute each other. Generally speaking, 
more advanced research techniques and more 
reasonable experimental conditions are necessary. 

 The second challenge is that it is hard to study 
the function in specific place of ZO proteins because 
of their highly dynamic subcellular localization. From 
in vitro models we can see that not only cell density 
but also external stimulus can influence the 
localization of ZO proteins. Because the localization 
alteration makes it different of binding partners and 
protein function, it is possible to get various results in 
different experimental conditions. Therefore, in vitro 
model is a double-edged sword: As compared with in 
vivo model, in vitro model can easily reflect the 
localization alteration of ZO proteins in different 
conditions, providing more opportunities for us to 

study the position specific function. Whereas, the 
dynamic localization makes it difficult to get stable 
and true results. Only establishing more reasonable in 
vitro models is able to give play to the unique 
advantages. 

 The last challenge is that comprehensive 
distribution of ZO proteins makes them difficult to be 
ideal clinical drug targets. Therefore, it is imperative 
to figure out their functions in different tissues and 
their upstream and downstream regulatory modes. 
Otherwise, development of drug delivery approaches 
specific to pathological areas is requisite in the future 
to attenuate the side effects of drugs targeting ZO 
proteins. However, the amount of drug side effects 
targeting ZO proteins may be less than that as 
expected because of their functional redundancy. For 
example, ZO-3 is not expressed in endothelial cells 
and its protein function in physiological condition is 
very limited in mammals, it may be a more ideal 
therapeutic target as compared with ZO-1 and ZO-2 if 
ZO-3 plays crucial roles in diseases. In addition, just 
because of comprehensive distribution of ZO proteins 
and previous definite evidence of their loss under 
inflammation or in the course of tumorigenesis, they 
are expected to be ideal early clinical diagnosis 
markers of numerous pathogenetic processes of 
different organs. 
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