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Abstract 

Background: Numerous studies have substantiated the association between aging and the progression 
of malignant tumors in humans, notably prostate cancer (PCa). Nevertheless, to the best of our 
knowledge, no studies have comprehensively elucidated the intricate characteristics of the aging 
microenvironment (AME) in PCa. 
Methods: AME regulatory patterns were determined using the NMF algorithm. Then an ageing 
microenvironment index (AMI) was constructed, with excellent prognostic and immunotherapy 
prediction ability, and its’ clinical relevance was surveyed through spatial transcriptomics. Further, the 
drug response was analysed using the Genomics of Drug Sensitivity in Cancer (GDSC), the Connectivity 
Map (CMap) and CellMiner database for patients with PCa. Finally, the AME was studied using in vitro and 
vivo experiments. 
Results: Three different AME regulatory patterns were identified across 813 PCa patients, associated 
with distinct clinical prognosis and physiological pathways. Based on the AMI, patients with PCa were 
divided into the high-score and low-score subsets. Higher AMI score was significantly infiltrated with 
more immune cells, higher rate of biochemical recurrence (BCR) and worse response to immunotherapy, 
antiandrogen therapy and chemotherapy in PCa. In addition, we found that the combination of 
bicalutamide and embelin was capable of suppressing tumor growth of PCa. Besides, as the main 
components of AMI, COL1A1 and BGLAP act as oncogenes and were verified via in vivo and in vitro 
experiments. 
Conclusions: AME regulation is significantly associated with the diversity and complexity of TME. 
Quantitative evaluation of the AME regulatory patterns may provide promising novel molecular markers 
for individualised therapy in PCa. 
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Introduction 
According to the latest statistical data of cancer, 

prostate cancer (PCa) has exceeded lung cancer to 
have the highest incidence in the malignant tumor 
among men, and it has the second-highest mortality 

rate following lung cancer[1]. For localized PCa, 
radical prostatectomy and radiotherapy are recom-
mended therapeutic strategies[2]. These treatments 
are capable of controlling the tumor to a great degree, 
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but still 20-25% of the patients experience biochemical 
recurrence (BCR)[3-5]. The disease may progress 
clinically within 5-8 years if patients with BCR are not 
secondarily treated, among whom 32-45% may die of 
PCa within 15 years[6]. The underlying mechanisms 
of widespread BCR in PCa should be elucidated to 
expand benefits of chemotherapy, antiandrogenic 
therapy and immunotherapy for more patients. 

Ageing is a time-dependent irreversible process 
characterized by slowly progressive degeneration of 
most physiological functions, and identified as a key 
threat for tumor-related diseases[7]. Cellular 
senescence is a permanent cell growth arrest, resulting 
in inhibition of the uncontrolled proliferation, 
migration, invasion and metastasis of tumor-prone 
cells[8]. However, effects of cellular senescence on 
tumors are extremely complicated. On the one hand, 
ageing-related genes (ARGs) suppress tumors by 
facilitating the senescence of tumor cells, while on the 
other hand, ARGs promote tumor growth, invasion, 
progression and metastasis of cancer[9]. Lately, the 
application of ARGs as diagnostic molecular 
biomarkers and prognostic indicators has caught the 
attention of cancer researchers[10]. However, the 
biological functions and the prognostic role of ARGs 
in PCa remain unclear, and the association between 
the ageing microenvironment and PCa progression 
has not been reported. 

Herein, this study is the first to depict the 
cancerous ageing microenvironment landscape, 
including its molecular characteristics, tumor 
immunity patterns and clinical correlation. Our study 
highlights the significance of the ageing 
microenvironment in the pathogenesis of cancer and 
formation of the tumor immune microenvironment 
(TIME) and set a theoretical basis for guiding 
therapeutic strategies for patients with PCa. 

Materials and Methods  
Ethics Statement  

The study received approval from the 
Institutional Ethics Committee of Sun Yat-sen 
University First Affiliated Hospital and the 
Institutional Animal Care and Use Committee of Sun 
Yat-sen University. The cell experimental protocols 
were approved by the Review Board of Sun Yat-sen 
University First Affiliated Hospital. All methods 
adhered to the relevant guidelines, regulations, and 
the declaration of Helsinki, including the ARRIVE 
guidelines. Informed consent was waived by the 
Medical Ethics Committee, as the archival samples 
(IHC analysis of COL1A1 and BGLAP) were 
retrospectively collected from 78 pairs of tumor 
tissues and their corresponding normal tissues after 

radical prostatectomy. The data were collected and 
analyzed anonymously. 

Data acquisition and preparation 
Transcriptomic data and related clinicopatho-

logical information from patients with PCa were 
derived from the TCGA, GEO, DKFZ databases and 
the MSKCC cohort. After removing cases with 
missing follow-up data, 813 cases (495 from TCGA, 96 
from GSE54460, 82 from DKFZ and 140 from MSKCC) 
with tumor samples and clinicopathologic data were 
eventually included in the study (Table 1). In 
addition, the data of 52 normal tissues of the prostate 
were retrieved from TCGA database. 311 human 
ARGs were obtained from the Human Ageing 
Genomic Resources and Molecular Signatures 
Database (MSigDB), listed in Table S1. The ComBat 
method in the R package “SVA” was applied to 
eliminate the batch effects of transcriptomic data 
across different datasets[11, 12] (Figure S1). Genomic 
mutation data (i.e. somatic mutations and copy 
number variations [CNVs]) of the TCGA-PRAD 
cohort were retrieved from the UCSC Xena website 
and the study by Davoli[13]. The CNV landscape of 36 
AME regulators in human chromosomes was plotted 
through the R package “Rcircos”.  

Selection of AME regulators and consensus 
molecular clustering using NMF 

The "limma" R package was used to identify 
BCR-related genes differentially expressed between 
BCR-positive and BCR-negative PCa tissues (FDR < 
0.05, log2 fold change > 1). Univariate Cox analysis 
determined bRFS-related ARGs. The overlapping 
prognostic ARGs (n=36) in TCGA were selected as 
key genes to build a protein interaction network using 
the STRING database, and an expression correlation 
network of these key genes was also constructed. 
Consensus clustering with the "NMF" R package 
(Brunet algorithm, 200 runs) discovered distinct AME 
patterns based on 36 key genes in a meta-cohort 
(n=813). 

GSVA analysis and functional annotation  
We utilized the "GSVA" R package[14] to 

conduct gene set variation analysis (GSVA) in order to 
explore differences in biological processes across 
various AME regulatory patterns. Metascape was 
used to assess the functions of the 36 AME regulators 
and their co-expression genes, considering 
significance as p-value < 0.01, enrichment score > 1.5, 
and a minimum count of 3. Additionally, gene set 
enrichment analysis (GSEA), Kyoto Encyclopedia of 
Genes and Genomes (KEGG), and Gene Ontology 
(GO) analyses were performed to examine distinct 
signal pathways and molecular mechanisms between 
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different patient groups. Significantly enriched genes 
were defined as having an FDR < 0.05 after 
conducting 1,000 permutations. 

 

Table 1. Clinical features of all eligible 813 PCa patients from 
TCGA, GEO, MSKCC and DKFZ cohorts 
Variables TCGA 

cohort 
GEO cohort MSKCC 

cohort 
DKFZ cohort 

(n = 495) (n = 96) (n = 140) (n = 82) 
Status: No BCR 409 (82.63) 51 (53.13) 104 (74.29) 64 (78.05) 
BCR 86 (17.37) 45 (46.87) 36 (25.71) 18 (21.95) 
Age<60 201 (40.61) 40 (41.67) NA NA 
≥60 294 (59.39) 56 (58.33) NA NA 
AJCC - T: T1 177 (35.75) 5 (5.21) 0 0 
T2 203 (41.01) 66 (68.75) 86 (61.43) 56 (68.29) 
T3 109 (22.02) 18 (18.75) 47 (33.57) 23 (28.05) 
T4 3 (0.61) 7 (7.29) 7 (5.00) 3 (3.66) 
TX 3 (0.61) 0 0 0 
AJCC - N: N0 344 (69.49) 93 (96.88) NA NA 
N1 78 (15.76) 3 (3.12) NA NA 
Nx 73 (14.75) 0 NA NA 
AJCC -M: M0 453 (91.52) 93 (96.88) NA NA 
Mx/M1 42 (8.48) 3 (3.12) NA NA 
ISUP grade:1 45 (9.09) 11 (11.46) 41 (29.28) 11 (13.41) 
2 145 (29.29) 52 (54.17) 53 (37.86) 50 (60.98) 
3 101 (20.40) 21 (21.88) 23 (16.43) 11 (13.41) 
4 56 (11.32) 7 (7.29) 11 (7.86) 1 (1.22) 
5 148 (29.90) 5 (5.20) 12 (8.57) 9 (10.98) 
Gleason score level: 
low 

66 (13.33) 11 (11.46) 41(29.28) 11 (13.41) 

mediun 183 (36.97) 73 (76.04) 76 (54.29) 61 (74.39) 
high 246 (49.70) 12 (12.50) 23 (16.43) 10 (12.20) 
Surgical margins     
positive 93 (18.79) 58 (60.42) NA NA 
negative 313 (63.23) 33 (34.38) NA NA 
unknown 89 (17.98) 5 (5.20) NA NA 
Median follow-up, 
months (IQR) 

14.10 
(4.80-30.28) 

53.57 
(23.78-82.83) 

45.56 
(23.64-61.11) 

35.61 
(12.53-48.06) 

Biochemical relapse 
free survival (95% CI) 

    

1 years 90.4 
(88.9-91.9) 

86.4 
(82.9-89.9) 

89.2 
(86.6-91.8) 

83.70 
(79.6-87.8) 

3 years 74.3 
(71.3-77.3) 

65.3 
(60.4-70.2) 

77.9 
(74.2-81.6) 

77.8 
(73.0-82.6) 

5 years 59.0 
(54.5-63.5) 

55.3 
(50.1-60.5) 

73.8 
(69.6-78.0) 

75.6 
(70.5-80.7) 

Note: Data are shown as n (%). AJCC, American Joint Committee on Cancer; GEO, 
Gene Expression Omnibus; PCa, prostate cancer; TCGA, The Cancer Genome Atlas; 
MSKCC and DKFZ cohort downloaded from http://www.cbioportal.org/datasets. 

 

Establishment of an immune landscape for 
distinct AME phenotypes 

The relationship between AME regulators and 
immune phenotypes was examined based on three 
aspects. First, four clusters of metagenes representing 
different responses of immune and inflammation 
were selected. Second, immune and stromal scores 
were calculated by the Estimation of Stromal and 
Immune cells in Malignant tumor tissues using 
Expression data (ESTIMATE)[15] and Microenviron-
ment Cell Populations-counter (MCP-counter) 
methods[16]. We conducted a comprehensive 
investigation of the overall immune landscape, 
encompassing immune-cell infiltration and immune 
function, utilizing the single sample gene set 
enrichment analysis (ssGSEA) algorithm. The ssGSEA 

method was employed to assess the abundance of 17 
immune-cell infiltration and 13 immune-function 
levels. The third aspect was immune checkpoint 
profiling, including PD-1 and PD-L1. 

Construction and validation of an ageing 
microenvironment index 

The analysis emphasized the importance of 
AME, leading to the construction of a survival 
prediction signature using the "glmnet" R package in 
the training set, following a previously established 
method[17]. This resulted in the development of an 
ageing microenvironment index (AMI) formula for 
survival prediction. The prognostic model was 
evaluated and validated in four cohorts (TCGA, 
MSKCC, GSE54460, and DKFZ) using Kaplan-Meier 
(K-M) and receiver operating characteristic (ROC) 
analyses. Principal component analysis (PCA) was 
performed using the 'vegan' and 'stats' packages to 
examine the distribution of AMI across different 
subgroups. Cox regression analyses, including 
univariate and multivariate analyses, assessed the 
AMI as an independent prognostic factor for PCa 
patients. The correlation between AMI and clinical 
features was visualized through a heat map, and 
subgroup analyses explored the correlation between 
AMI and significant clinical features. Overall, this 
comprehensive approach demonstrated the signifi-
cance of AMI in predicting PCa patient outcomes. 

Spatial transcriptomics data processing 
The trimmed data (three prostate cancer patients 

and one normal human prostate) was downloaded 
from 10X Genomics website and mapped to the 
GRCH38 v93 genome assembly. We obtained the 
gene-spot matrices and then used the “Seurat” 
package (versions 3.0.0/3.1.3) to analyze the matrices. 
For each patient’s data, spots were eliminated with 
minimum detected gene count less than 200 genes. 
And genes were selected when minimum read count 
exceeded 10 and expression spots exceeded 2. We 
used the AddModuleScore function with default 
parameters in Seurat (version 3.1.3) to calculate the 
signature scoring. Spatial feature expression plots 
were demonstrated with the SpatialFeaturePlot 
function in Seurat and the “STUtility” R package 
(version 1.0.0). 

Construction of a nomogram integrated with 
AMI and clinical factors  

To develop a scoring system capable of 
predicting the 1-, 3- and 5-year bRFS of patients with 
PCa, we established a nomogram combining the AME 
signature and other clinical characteristics in the 
TCGA cohort. AUC values and calibration plots were 
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generated to examine the prediction accuracy. 
Decision curve analysis (DCA) was performed to 
evaluate the clinical practicability of the nomogram.  

Predicting the effect of antiandrogenic therapy  
Data regarding the response of PCa patients to 

bicalutamide, embelin and docetaxel in the four 
cohorts (TCGA, MSKCC, GSE54460 and DKFZ) were 
retrieved from the GDSC database by the R package 
“pRRophetic”[18]. The CMap database (https:// 
portals.broadinstitute.org/cmap/) was utilized to 
explore potential drugs. P-values < 0.05 denoted 
statistical significance. Subsequently, the 3D structure 
diagrams of the candidate drugs were generated by 
PubChem (https://pubchem.ncbi.nlm.nih.gov/). We 
used CellMiner to screen for drugs targeting 
important genes to develop new treatment strategies 
for patients with PCa. Finally, an in-vivo efficacy 
assessment of drug-loaded micelles in xenografts was 
performed to validate the prediction (details in 
Supplementary appendix: Supplementary methods). 

Quantification of immune response prediction 
using immunophenoscore and TIDE and 
validating in two immunotherapy cohorts 

Immunophenoscore (IPS) is a widely used index 
for treatment response prediction of anti-PD-1 and 
anti-CTLA-4 agents[19]. The tumor Immune 
Dysfunction and Exclusion (TIDE) algorithm was 
used to exhibit mechanisms of tumor immune 
escape[20]. Tumor cells with higher TIDE scores were 
tend to induce immune escape, leading to an 
unfavorable response to ICI treatment. Lastly, we 
stated the difference of immunotherapy response 
between AMI-high and AMI-low subgroups in 
GSE78220 and IMvigor cohort. 

Fitness gene analysis 
Fitness genes were selected from a previous 

study[21] and were defined as genes required for cell 
growth or viability in cancer cell lines. In addition, 
they were used to validate the essential role of 
COL1A1 and BGLAP in cancer cells. DepMap Portal 
data was used to further validated the essential roles 
of COL1A1 and BGLAP in cancer cells (https:// 
depmap.org/portal/). And COL1A1 and BGLAP act 
as oncogenes and were verified via in vivo and in 
vitro experiments (details in Supplementary 
appendix: Supplementary methods). 

Statistical analysis 
Statistical analyses were conducted using 

Rstudio 4.2.2, SPSS 19.0 or GraphPad Prism 9.0 
software. All data and error bars are presented as the 
mean ± SDs from at least three independent 
experiments. A Wilcox test was used to compare 

differences between two groups. Survival curves were 
generated using the Kaplan – Meier method and 
compared using the log-rank test. To investigate the 
correlation between two independent groups, the 
Pearson’s Chi-square test was used. The receiver 
operating characteristic curve (ROC) was drawn to 
evaluate the predictive ability for BCR. The indicated 
P values (*P < 0.05, **P < 0.01 and ***P < 0.001) were 
considered statistically significant. For all of the 
experiments shown, n is indicated in the figure 
legends. The values represent the mean. The error 
bars, if shown, represent the s.d. (as indicated in the 
figure legends). 

Results  
Landscape of genetic variations, expression 
patterns and therapeutic potential of AME 
regulators in PCa 

We identified 36 AME regulators, comprising 18 
bRFS-positive and 18 bRFS-negative regulators (Table 
S2), which impact cancer tumorigenesis and 
progression (Fig. 1A). Analysis using the Metascape 
database revealed enrichment in terms related to 
ageing, response to growth factor, protein phospho-
rylation, regulation of histone modification, and 
human T-cell leukemia virus 1 infection (Fig. 1B). A 
protein-protein interaction (PPI) network demons-
trated strong expression correlation among these 
genes (Fig. S2C), and correlation analysis further 
supported their transcriptional level correlation (Fig. 
S2E). 

Somatic mutations of the top 25 AME regulators 
were examined in 483 PCa samples, revealing a 
mutation frequency of 17.39% (84 samples) (Fig. 1C). 
Downregulated regulators showed higher mutation 
frequencies, notably ATM, PTEN, and LRRK2. 
Co-occurring mutations were observed between 
COL1A1 and PPARGC1A, as well as between FOXM1 
and STAT3 (Fig. S2D). 

Furthermore, CNVs of these regulators were 
investigated in 496 PCa samples from the TCGA 
cohort, showing universal CNV patterns (Fig. 1D). 
Most downregulated regulators (18/36) showed 
widespread copy number amplification, while 
upregulated regulators had copy number deletion. 
Chromosomal CNV patterns are depicted in Fig. 1E. 
Due to the common genetic alterations of AME 
regulators in PCa, it is important to assess whether 
these changes affect their expression. PCA analysis 
demonstrated distinct distribution patterns of AME 
regulators between PCa samples and normal prostate 
tissues (Fig. 1F). The expression of most regulators 
showed significant differences in PCa, suggesting 
enriched AME regulation. Notably, the expression of 
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RB1 and CNR1, known to be significantly low in 
multiple solid tumors[22, 23], may be influenced by 

CNVs (Fig. 1G). 

 

 
Figure 1. The panorama of genetic variation, expression patterns, and therapeutic potential of AME regulators in prostate cancer. (A) Summary of the current knowledge about 
the dynamic reversible process of aged tumor microenvironment in cancer progression; (B) Metascape enrichment network visualization showed the intra-cluster and 
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inter-cluster similarities of enriched terms, up to 20 terms per cluster. Cluster annotations were shown in the color code; (C) The mutation frequency of top 25 AME regulators 
in 483 patients with prostate cancer from the TCGA Cohort. Each column corresponds to an individual case. The TMB is displayed as the right bar plot. The panel on the bottom 
shows the mutation frequency and proportion of each variant type for each regulator. The stacked bar plot on the left displays the fraction of conversions in each patient. (D) The 
copy number variation frequency of 36 AME regulators in 495 PCa tissues from TCGA-PRAD. Green dot, the deletion frequency; Red dot, The amplifcation frequency. (E) The 
location of CNV alteration of the AME regulators on 23 chromosomes using data from TCGA. (F) Principal component analysis for the expression profiles of 36 AME regulators 
to distinguish paired prostate cancer samples from normal prostate samples in TCGA cohort. There is no intersection between the two subgroups, indicating the prostate cancer 
samples and normal prostate samples were well distinguished based on the expression profiles of AME regulators. PCa samples were marked with red and normal prostate 
samples were marked with green. (G) The expression detail of 36 AME regulators between normal prostate tissues and prostate cancer tissues from TCGA cohort. Green box, 
normal prostate samples; orange box, prostate cancer samples.  

 

Identification of tumor ageing 
microenvironment patterns mediated by 36 
AME regulators  

A comprehensive landscape of the interactions 
among the 36 AME regulators and their prognostic 
value in PCa were demonstrated in an AME 
regulatory network in the meta-cohort (Fig. S2E). The 
results indicated that the cross-talk among the 
regulators may play a critical role to form different 
AME regulatory patterns and are involved in 
carcinogenesis and tumor progression. Based on this 
hypothesis, three distinct AME patterns were 
identified using the NMF algorithm, including 378 
cases in cluster AME-A, 269 cases in AME-B and 166 
cases in AME-C (Fig. 2A-B). And cases in AME-B 
exhibited a marked survival advantage, whereas the 
prognosis of cases in AME-C was worst among the 
three clusters (P < 0.001, log-rank test).  

Characteristics of immune cell infiltration in 
distinct AME regulatory patterns in PCa 

To examine biological behaviours among the 
three AME regulatory patterns, GSVA was 
performed. As shown in Fig. 2G-I, AME-C was 
significantly enriched in carcinogenic activation and 
stromal pathways such as ECM receptor interaction, 
transforming growth factor beta (TGF-β) signalling 
pathway, cell adhesion and MAPK signalling 
pathway. AME-B was markedly enriched in pathways 
involved in immune activation including the 
activation of chemokine signalling pathway, T cell 
receptor signalling pathway, Toll-like receptor 
signalling and cytokine-cytokine receptor interaction 
pathway, whereas AME-A was prominently enriched 
in pathways related to immune suppression.  

To further ascertain the underlying biological 
behaviour of each AME regulatory pattern, 1577 AME 
phenotype-related DEGs were obtained using the 
“limma” R package (Fig. S3A). Then significantly 
enriched biological processes from GO enrichment 
analysis were summarised in Fig. S3C. These DEGs 
were enriched in biological processes associated with 
cancer-related pathways and immunity, which 
verified that AME regulators are important for 
immune regulation of the tumor microenvironment 
(Fig. S3B-S3C). 

Furthermore, the MCP-counter and ESTIMATE 

methods were used to examine the distribution of 
immune and stromal cells based on the expression of 
AME regulators (Fig. 2C-E, Fig. S3D). Among all the 
patients, the estimated immune scores ranged from 
-1452.5 to 2989.1. Shown in Fig. 2F; Fig. S3F, the 
estimate, immune and stromal scores of the AME-C 
cluster were significantly higher than those of the 
other two clusters (P < 0.05, Mann-Whitney U-test). 
Differences in the distribution of scores among the 
three AME clusters were assessed, and the AME-C 
cluster was found to have lowest tumor purity. In 
addition, we investigated the relationship between 
HLA genes and the three AME clusters. As displayed 
in Fig. 2D, the expression of HLA genes was 
significantly higher in the AME-B and AME-C 
clusters than in the AME-A cluster (FDR < 0.05, 
Mann-Whitney U-test). In addition, the relationship 
between three distinct AME patterns and the 
suppression/activation state of immune function as 
well as the related chemokine/cytokine/inflam-
matory factor changes was added, as shown in the 
Figure S3E. The cluster C showed higher levels of 
aging-related chemokines/cytokines/inflammatory 
factors, consistent with previous findings. 

Moreover, the analysis of TME cell infiltration 
revealed that the AME-C cluster was remarkably 
enriched with innate immune cell infiltration 
including natural killer (NK) cells, macrophages, T 
cells, CD8 T cells, mast cells, MDSCs and 
plasmacytoid dendritic cells (Fig. 2C, 2E). However, 
patients in the AME-C cluster did not exhibit a 
matched survival advantage (Fig. 2B). Previous 
research has revealed that tumors with immune- 
excluded phenotypes have abundant immune cells; 
however, these immune cells are restricted in the 
stroma encircling tumor cell nests instead of 
penetrating into the tumor parenchyma. In addition, 
the activation of stroma in TME suppresses T cells[24]. 
The results of GSVA suggested that the AME-C 
regulation pattern was markedly related to stromal 
activation. Therefore, we could speculate that stromal 
activation of the AME-C cluster may inhibit the 
anti-tumor effects of immune cells. Further analyses 
revealed that stromal activity was distinctly increased 
in the AME-C cluster, including the activation of 
epithelial-mesenchymal transition (EMT), TGF-β 
pathway and angiogenesis, thus verifying our 
speculation (Fig. 2G-I). It’s known that PD-L1 is an 
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acknowledged biomarker to predict the anti-PD-1/L1 
therapy response[25], thus we compared PD-1/L1 
expression among different AME regulatory clusters 
and found an obvious upregulation in the AME-B 
cluster (Fig. S3G). 

Based on the abovementioned analyses, we 
found that the three AME regulatory patterns had 
notably distinct TME cell infiltration phenotypes. 
AME-C was identified as an immune-excluded 
phenotype characterised by innate immune cell 
infiltration and stromal activation. AME-B was 
identified as an immune-inflamed phenotype 
characterised by adaptive immune cell infiltration and 
immune activation, and AME-A was identified as an 
immune-desert phenotype characterised by immune 
suppression (Fig. 2G-I and Fig. 2C-E).  

Clinical significance of quantitative AME 
regulators (AMI) in PCa  

Given the association between AME regulators 
and immune-oncological features, we assessed their 

clinical significance in PCa. Because most regulators 
(22/36) exhibited clinical relevance (Table S2), we 
constructed an AME regulator-based signature 
(ageing microenvironment index [AMI]) for 
prediction. In the training set of TCGA cohort, 36 
ARGs were subjected to LASSO regression analysis 
(Fig. S4A); 12 genes identified via LASSO were 
subsequently analysed by multivariate Cox regression 
to develop the risk signature (Fig. S4A). As a result, a 
risk signature containing eight ARGs was constructed 
based on 248 PCa cases in the training set of TCGA 
cohort (Fig. S4B). Specifically, the AMI formula was 
constructed based on a linear combination of the 
expression of 8 ARGs weighted with the regression 
coefficients of the multivariate Cox regression 
analysis. The formula is: AMI =COL1A1 × 0.664883214 
+ BGLAP × 0.882893312 + DDC × 0.619482468 - 
KRTAP4-3 × 6.72283363 – NR5A1 × 12.2363945 - 
PDCD4 × 1.092162892 - PITX3 × 8.308315706 - ANXA3 
× 0.348239554. 

 

 
Figure 2. Initial screening of potential prognostic AME regulators and establish the AME phenotypes. (A) Consensus molecular clustering of thirty-six AME regulators by NMF. 
(B) Kaplan-Meier curves of biochemical relapse-free survival (bRFS) for 813 PCa patients in meta cohort with different AME clusters. The numbers of patients in AME-A, AME-B, 
and AME-C phenotypes are 378, 269, and 166, respectively (Log-rank test). (C) Unsupervised clustering of 36 AME regulators in the meta PCa cohort. Estimate score, Immune 
score, Stromal score, Tumor Purity, as well as the AME cluster, is shown in annotations above. Red represented the high expression of regulators and blue represented the low 
expression. (D) Gene expression of HLA gene sets between two distinct subgroups. (E) The fraction of tumor-infiltrating lymphocyte cells in three AME clusters using the MCP 
counter algorithm. Within each group, the scattered dots represented TME cell expression values. The thick line represented the median value. The bottom and top of the boxes 
were the 25th and 75th percentiles (interquartile range). The statistical difference of three gene clusters was compared through the Kruskal-Wallis H test. *P < 0.05; **P < 0.01; 
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***P < 0.001. (F) Estimate score between High AMI and Low AMI group. (G-I) GSVA enrichment analysis showing the activation states of biological pathways in distinct AME 
regulation patterns. The heatmap was used to visualize these biological processes, and red represented activated pathways and blue represented inhibited pathways. The prostate 
cancer cohorts were used as sample annotations. (G) AME cluster A vs AME cluster B; (H) AME cluster A vs AME cluster C; (I) AME cluster B vs AME cluster C.  

 
Further, we analysed spatial transcriptomics 

data from three prostate cancer patients and one 
normal human prostate. We found that patients with 
higher stage had higher level of AMI (Fig. 3I). And 
more COL1A1 and BGLAP are expressed in the tumor 
than in the normal prostate (Fig. 3I). 

Evaluation and validation of the prognostic 
significance of AMI  

Using the median AMI as the cut-off value, 
patients were divided into the low- and high-AMI 
groups (Fig. S4B-C, 3F-H). The BCR status and 
follow-up time of patients with PCa were 
demonstrated in Fig. S4B-C, 3F-H. In addition, a 
heatmap demonstrating the expression profiles of the 
eight ARGs was plotted (Fig. 3A-D; Fig. S4B-C). 
Kaplan-Meier survival curves of the low- and 
high-AMI groups in the training set are shown in Fig. 
S4B (P < 0.001). The signature was evaluated using 
time-dependent ROC curves for predicting prognosis, 
with the AUC values for predicting 1-, 3- and 5-year 
OS in the training set being 0.793, 0.846 and 0.893, 
respectively (Fig. S4B). 

To determine the applicability of AMI in clinical 
practice, we verified the repeatability and robustness 
of AMI using an internal validation set (Fig. S4C; Fig. 
3A,E) and three independent cohorts (Fig. 3F–H). We 
found that the classifier significantly stratified 
patients with bRFS into the high- and low-AMI 
groups (Fig. 3E–H; Fig. S4C, P < 0.05). The AUC 
values of the prognostic model for predicting 5-year 
bRFS were 0.893, 0.783, 0.838, 0.729, 0.707 and 0.692 in 
the TCGA training cohort, TCGA testing cohort, 
whole TCGA cohort, GSE54460 cohort, MSKCC 
cohort and DKFZ cohort, respectively (Fig. S4B–C; 
Fig. 3E-H). 

To further verify the prognostic value of the 
AME signature for diverse clinical and pathological 
characteristics, subgroup analysis was applied across 
the four PCa cohorts. AMI was verified in different 
clinical subgroups (Fig. S5-S6) and performed well in 
patients aged >60 years, those with higher ISUP levels 
or Gleason scores, those with T3-T4 stage disease and 
those with positive surgical margin, regardless of the 
cohort (Fig. S5-S6, P < 0.001). The incidence of BCR, 
the WHO ISUP classification grade, GS and T-staging 
were higher in the high-AMI group than in the 
low-AMI group. In addition, after adjusting for 
clinical and pathological characteristics, AMI was 
identified as an independent prognostic factor for 

patients with PCa (Fig. S7A–F). The results of PCA 
analyses revealed that different AMI subgroups 
exhibited distinct discrete tendency in the 
two-dimensional plane (Fig. 3A-D). 

Comparison of the AMI with other known 
prognostic markers 

Several prognostic markers have been discov-
ered for PCa using tumor tissues or in single-centre 
studies. “Signature lv” is considered as a promising 
tool to predict the BCR of PCa [26]. “Signature Liu” is 
a ferroptosis-related gene signature developed to 
predict the prognosis of PCa[27]. “Signature Shao” is 
an independent index associated with OS of patients 
with PCa [28]. “Signature Yang” comprising 28 
hypoxia-associated genes serves as prognostic 
biomarkers for PCa[29]. “Signature Yuan” is a 4-gene 
signature developed for predicting the BCR of PCa 
based on clinical features [30]. To compare the 
predictive accuracy of the AME signature with that of 
the abovementioned five signatures, ROC and 
c-index-based analyses of other biomarkers were 
performed in the TCGA cohort (Fig. S9A-F; Fig. 
4A-B). The AME signature developed in this study 
was identified as a superior predictor and exhibited 
better stability and reliability in predicting the bRFS of 
patients with PCa. 

Exploration of potential mechanisms  
To explore the underlying mechanisms of the 

AMI model, GSEA was used to analyse the potential 
biological processes and pathways. DEGs in the high- 
and low-AMI groups were primarily enriched in the 
p53 signalling pathway, IL-17 signalling pathway, 
apoptosis, extracellular matrix organisation, metabo-
lism of important substances, androgen response and 
T cell activation (Fig. S10B-C). These results help 
deepen understanding of the cellular biological effects 
of the ageing microenvironment. Moreover, GSEA 
revealed that the high-AMI group was significantly 
enriched in cell adhesion molecules (CAMs), 
cytokine-cytokine receptor interaction and activation 
of immune response (Fig. S10A), whereas the 
low-AMI group was significantly enriched in 
propanoate metabolism, ‘actin filament-based 
movement and actomyosin structure organisation 
(Fig. S10A). In addition, the expression of Ki67 was 
higher in the high-AMI group than in the low-AMI 
group (Fig. S7C-F).  
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Figure 3. The relationship between prognosis and clinicopathological parameters in four independent cohorts (*p < 0.05; **p < 0.01; ***p < 0.001). (A-D) The distribution of 
AMI, biochemical recurrence status along with bRFS times of PCa patients and heatmaps of 8 key prognostic AME regulators. (E-H) Kaplan–Meier survival curves of bRFS and 
ROC analysis of the AME signature indicated that the signature has good bRFS predictive. And The two risk groups based on AMI were distinguished by PCA. (I) H&E, BGLAP, 
COL1A1 expression and AMI feature plots from three prostate cancer patients and one normal human prostate with data generated using the Visium ST platform.  
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Figure 4. (A) The C-index of each model was calculated and compared. (B) The advantages and disadvantages of each model were compared by RMS curve. (C) The abundance 
of each TME infiltrating cell in high and low-AMI group. The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented 
median value, and black dots showed outliers. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001). (D) Correlations between AMI and the known 
immune checkpoints using Spearman analysis. The negative correlation was marked with blue and positive correlation with red. And we found that PD-1/L1 expression level in 
high AMI group were higher than low AMI group. (E) Correlations between AMI and TMB, the known immune cells using Spearman analysis. The negative correlation was marked 
with green and positive correlation with red. (F) Survival analyses for patients receiving anti-PD-L1 immunotherapy stratified by both AMI and TMB using Kaplan-Meier curves. 
H, high; L, Low; TMB, tumor mutation burden (P < 0.001, Log-rank test). (G)The proportion of molecular subtypes in high and low AM regulation patterns. (H) The relative 
distribution of IPS was also compared between AMI high and low groups in TCGA-PRAD cohort. (I) The relative distribution of TIDE was compared between AMI high versus 
low groups in TCGA-PRAD cohort. (J) Relationship between immunotherapy response and AMI level in two immunotherapy cohorts.  

 

Immune infiltration and tumor 
microenvironment  

To examine the relationship between the AME 
signature and tumor immunity, we used the 
ESTIMATE algorithm to analyze TCGA dataset. Fig. 
S11A in Supplementary appendix shows the specific 
correlation between each tumor-infiltrating cell type 
and eight regulators as assessed via Spearman’s 
correlation analysis. We focused on two regulators, 
COL1A1 and BGLAP, and observed their significantly 
positive correlation with most tumor-infiltrating 
immune cells. Fig. 4C shows the abundance of 
immune cell types in the low- and high-AMI groups 
in the training set. On performing an immune cell 
type-specific analysis, we found that patients with 
low AMI exhibited higher levels of resting memory 
CD4 T cells and M2 macrophages, whereas high-AMI 
patients exhibited higher levels of activated NK cells, 
follicular helper T cells and plasma cells (Fig, 4C). To 

further assess the characteristics of the AME 
signature, we analysed the correlation between 
several immune checkpoints and the AMI (Fig. 4D) 
and found that PDCD1 and CD274 showed a positive 
correlation with AMI (Fig. 4D, RPDCD1-riskscore = 0.22, P 
< 0.001; RCD274-riskscore = 0.2, P < 0.001). In addition, 
tumor mutation burden, which is closely associated 
with immunotherapeutic efficacy, was assessed. We 
found that patients with high AMI and mutation 
burden had a worse prognosis (Fig. 4F; Fig. S11D-E). 
Furthermore, we examined the specific relationship 
between the AMI and the abundance of eight 
tumor-infiltrating leukocytes and two stromal cell 
populations using MCP-counter analysis (Fig. S11B). 
We found that the AMI was positively correlated with 
CD8 T cells, cytotoxic lymphocytes, monocytes, 
endothelial cells and fibroblasts but negatively 
correlated with neutrophils. Moreover, tumor 
mutation burden was positively correlated with CD8 
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T cells (Fig. S11B; Fig. 4E), and the prognosis of 
patients with MSI-L and MSI-H status was poorer 
than that of patients with MSS, who also had a lower 
AMI value (Fig. 4G; Fig. S11F-G). 

Different AME landscape between 
AMI-high/low subgroup and relationship 
between eight hub AME regulators and AME 

By analyzing the differences in the abundance of 
immune cell and fibroblast infiltration, immune 
function status and the levels of senescence related 
cytokines/inflammatory factors (including matrix 
metalloproteinases, MMP1/3/10; plasminogenacti-
vator inhibitor 1/2, PAI1/2; chemokines/cytokines 
and growth factors, CXCL1/2, IL6/8/10, IGFBP3/4/5/7, 
CSF2; fibroblast related inflammatory factors, 
HAPLN1, LOXL1) between AMI-high and AMI-low 
groups, the results showed that the degree of immune 
cell infiltration was higher in the AMI-high group, the 
immune function was active, and a large amount of 
senescence related cellular inflammatory factors were 
secreted (Fig. S12-13). Further analysis of eight 
important aging regulatory factors in AMI showed 
that their expression levels were highly correlated 
with the score of immune matrix fibroblast, the degree 
of infiltration, the score of immune function status 
and the level of age-related cellular inflammatory 
factors. For example, COL1A1 expression was 
significantly positively correlated with fibroblast 
infiltration abundance, and samples with high 
KRTAP4-3 expression levels showed higher NK cell 
infiltration abundance. The expression level of BGLAP 
was negatively correlated with the infiltration 
abundance of neutrophils. In addition, the expression 
levels of NR5A1 and BGLAP were positively 
correlated with the co-stimulatory state of T cells, 
while PDCD4 and ANXA3 showed the opposite trend. 
As for the regulation of inflammation and chemokines 
related to aging, COL1A1 mainly regulates the 
secretion level of IGFBP3/4/5/7, NR5A1/PITX3 mainly 
regulates the secretion level of IL8/10/CSF2, and the 
expression level of ANXA3 is negatively regulated 
with these cytokines (Fig. S14). 

Nomogram for bRFS prediction  
To improve the ability of the AMI model in 

predicting bRFS, we combined the AMI with 
conventional clinicopathological features and 
constructed a nomogram in the TCGA cohort (Fig. 
S8A). The ROC curve (AUC5years = 0.846) showed good 
predictive accuracy of the nomogram (Fig. S8D). To 
further assess the predictive reliability and clinical 
applicability of the nomogram, we plotted calibration 
curves and performed DCA. The calibration curves 
illustrated good probability consistencies of the 

nomogram (Fig. S8B). DCA verified that the net 
benefit of prediction was higher in the nomogram 
model compared with the TNM staging system (Fig. 
S8C). In addition, the nomogram achieved the highest 
AUC value of all other clinicopathological parameters 
in predicting 5-year bRFS (Fig. S8D). 

Prediction for benefits of antiandrogenic 
therapy, chemotherapy and immunotherapy  

Additionally, alongside radical surgery and 
radiotherapy, endocrine therapy and chemotherapy 
are effective treatments for PCa. GSEA indicated 
significant enrichment of "androgen response" in the 
low-AMI group. We assessed the response to 
bicalutamide and found that the low-AMI groups in 
three cohorts responded better (P < 0.05), except for 
the MSKCC cohort (P = 0.42) (Fig. 5C). 

Moreover, the high-AMI group had higher 
Gleason scores, indicating faster tumor growth, rapid 
cell proliferation, and poorer tissue differentiation. 
We investigated the response to chemotherapy and 
observed that the low-AMI group in four cohorts 
responded better to docetaxel (Fig. 5D). Additionally, 
apoptosis was enriched in cancer-related pathways, 
and the low-AMI group in TCGA and DKFZ cohorts 
showed a better response to embelin, an apoptosis 
inhibitor (Fig. 5E). 

For immune therapy, TIDE scores were 
significantly lower and IPS was significantly higher in 
the low-AMI group (P < 0.001) (Fig. 4H, 4I). AMI 
levels differed significantly between non-responders 
and responders in two anti-PD-L1 immunotherapy 
cohorts (Fig. 4J), indicating the role of AME 
regulatory patterns in mediating the immune 
response. 

Using CellMiner, we identified anticancer drugs 
correlated with the expression of the model's eight 
genes. Axitinib's activity correlated positively with 
COL1A1 expression, while testolactone's activity 
correlated positively with BGLAP expression (Fig. 
5A). Furthermore, using the CMap database, we 
identified eight small-molecule drugs with thera-
peutic potential for PCa patients based on 
upregulated and downregulated genes (Table S3). 
The 3D structure of these drugs was downloaded 
from PubChem (Fig. 5B). 

In vivo efficacy assessment of drug-loaded 
micelles in xenografts  

During 20 days of bicalutamide treatment, tumor 
growth was effectively suppressed (Fig. 5I). 
Bicalutamide formulated into PEG-PLA polymeric 
micelles suppressed tumor growth more significantly. 
However, these tumors became resistant to 
bicalutamide after treatment for 20 days and began to 
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grow again. Antiapoptotic proteins like XIAP is 
reported to be upregulated in hormone refractory 
prostate cancer, thus emblin, an effective XIAP 
inhibitor, was subsequently applied to these tumors. 
As exhibited in Fig. 5F-J, sequential treatment with 
embelin led to regression of bicalutamide resistant 
tumors. 

COL1A1 and BGLAP knockdown inhibited PCa 
proliferation and migration and promoted 
apoptosis 

To further investigate the relationship between 
the expression of AME regulators and PCa metastasis, 
we compared the distribution of 36 AME regulators in 
eight PCa cell lines with different pathological origins. 
Most regulators had higher distribution in metastasis- 
derived cell lines than in primary tumor-derived cell 

lines (Fig. S15A), indicating that modification of the 
ageing microenvironment may help to promote PCa 
metastasis. Particularly, two regulators, COL1A1 and 
BGLAP, were significantly upregulated in metastasis- 
derived cell lines. Moreover, we determined that the 
two regulators acted as the pan-cancer fitness gene 
(Fig. S15B)[21], and DepMap data also reminded that 
COL1A1 and BGLAP were essential genes in almost all 
cancer types (Fig. S16). Therefore, we assessed 
whether these molecules could be therapeutic targets 
for metastatic PCa. 

Then we hypothesised that COL1A1 and BGLAP 
affected the malignant biological behaviour of PCa. 
We performed several experiments in vitro and 
in vivo with two metastasis-derived cell lines and 
observed that COL1A1 and BGLAP knockdown 
significantly inhibited the proliferation, migration and 

 

 
Figure 5. (A) CellMiner was used to screen for anticancer drugs and their targets based on the eight genes that were used to construct the model, and many anticancer drugs 
were significantly correlated with the expression of these genes. (B) The 3D structure tomographs of the eight candidate small-molecule drugs(benzocaine, cromolyn, imatinib, 
ondansetron, proguanil, quipazine, sulfabenzamide and vigabatrin) for PCa. (C) Sensitivity to bicalutamide in different risk groups. (D) Sensitivity to docetaxel in different risk 
groups. (E) Sensitivity to Embelin in different risk groups. (F-G) Chemical structures of bicalutamide and embelin (F) and schematic diagram showing the combined effect of 
bicalutamide and embelin on apoptosis in androgen-sensitive cells and on tumor regression (G). (H-I) Effect of bicalutamide and embelin-loaded micelles on growth of tumors 
derived from LNCaP prostate cancer cells in nude mice. Points are mean tumor size (n=5); bars, SE. (J) The flowchart of the in-vivo efficacy assessment of drug-loaded micelles 
in xenografts.  
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metastasis of PCa cells and promoted apoptosis (Fig. 
6-7; Fig. S17-18). In addition, we found that the 
protein expression of COL1A1 and BGLAP was related 
to the ISUP grade of PCa in clinical samples (Fig. 
7D-F; Fig. S18D-F). To further validate these findings, 
IHC analysis of these two genes was performed in 78 
pairs of tumor tissues and the corresponding normal 
tissues after radical prostatectomy. Consistent with 
the expectation, the expression of COL1A1 and 
BGLAP was higher in tumor tissues than in normal 
tissues, and high expression of COL1A1 and BGLAP 
was associated with higher GS and BCR rate (P < 0.01) 
(Fig. 7D-F; Fig. S18D-F; Table 2,3). Besides, patients 

in the COL1A1_High&BGLAP_High group had a 
highest risk of biochemical recurrence (Fig. S19A-B). 
We also found in the TCGA dataset that the 
expression levels of COL1A1 and BGLAP were higher 
in the samples with positive surgical margins, and the 
differences were statistically significant (Fig. S19C-D). 
In the GSE54460 renal cell carcinoma dataset, the 
expression level of COL1A1 was higher in the positive 
surgical margin group, and the P-value was less than 
0.05, but the expression level of BGLAP was not 
correlated with the positive surgical margin (Fig. 
S19E-F). 

 

Table 2. Correlations between COL1A1 and BGLAP protein expression levels by H score and clinicopathological characteristics in PCa 
(SYSU cohort, n=78) 

 
Characteristics 

 
Classification 

 
Cases 

COL1A1 expression P-value BGLAP expression P-value 
Low High  Low  High  

Age (years) < 65 27 65.69±5.97 67.56±7.36 0.076 65.82±6.06 67.44±7.31 0.154 
≥ 65 51 

PSA <10 41 10.55±11.20 40.60±113.27 0.038* 10.50±11.80 40.65±113.19 0.018* 
 10-20 20 
 >20 17 
BMI <18.5 1 23.96±2.61 24.25±2.87 0.413 24.24±2.68 23.97±2.81 0.723 

18.5-24 39 
24-28 31 
≥28 7 

Biochemical Recurrence NO 64 38 26 0.00048 
*** 

37 27 0.0063 
** YES 14 1 13 2 12 

 
AJCC stage_T 
 

T1 12 9 3 <0.0001 
**** 

12 0 <0.0001 
**** T2 35 23 12 22 13 

T3 24 6 18 4 20 
T4 7 1 6 1 6 

 
WHO ISUP grading 
 

1 13 13 0 <0.0001 
**** 

12 1 0.002 
** 2 15 7 8 6 9 

3 13 7 6 8 5 
4 23 8 15 10 13 
5 14 4 10 3 11 

Intraoperative blood 
loss (ml) 

<100 14 123.33±
93.35 

134.35±121.05 0.419 113.50±71.91 142.08±130.35 0.424 
100-300 26 
≥300 4 
NA 34 

Recovery time of 
urinary control (months) 

<3 22 3.76±3.92 3.84±3.74 0.895 3.53±3.93 4.06±3.71 0.303 
3-6 27 
≥6 14 
NA 15 

Gleason score 6 12 12 0 <0.0001 
**** 

11 1 0.002 
** 7 29 16 13 15 14 

8 23 6 17 9 14 
9 14 5 9 4 10 

*P < 0.05 was considered to be statistically significant (chi-square test) 
AJCC, American Joint Committee on Cancer; SYSU cohort, 78 patients with PCa from Sun yat-sen University First affiliated Hospital 

 

Table 3. Univariate and multivariate Cox regression analyses of different parameters on biochemical relapse-free survival in SYSU cohort 
(n=78) 

Parameter Univariate Analysis Multivariate Analysis 
HR (95%CI) P Value HR (95%CI) P Value 

Age (≥65 yr vs. <65 yr) 0.19 (0.06-0.6) 0.0017 0.19 (0.05-0.74) 0.02 
T-Stage (III/IV vs. I/II) 0.56 (0.2-1.62) 0.003 2.33 (0.68-7.99) 0.18 
Gleason Score (8/9 vs.6/7) 0.76 (0.43-1.35) 0.001 17.80 (1.35-234.11) 0.03 
WHO ISUP (4/5 vs.1/2/3) 0.85 (0.57-1.28) 0.0016 0.05 (3.4e-3-0.71) 0.03 
BGLAP expression level (High vs. Low) 6.22 (1.39-27.86) 0.0063 4.10 (0.76-22.00) 0.10 
COL1A1 expression level (High vs. Low) 15.14 (1.98-115.87) <0.001 17.24 (1.74-170.67) 0.01 

HR=hazard radio. CI=confidence interval 
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Figure 6. COL1A1 are upregulated in prostate cancer and promotes prostate cancer progression, COL1A1 positively related to PCa ISUP grading were verified in SYSU cohort 
by Immunohistochemistry (IHC) H score. (A) Compared with normal prostate tissue, COL1A1 is upregulated in prostate cancer. (B) The survival curves of COL1A1 expression 
was estimated by the Kaplan-Meier plotter. (P <0.001, Log-rank test). (C) The relative expression of COL1A1 between tumor and normal tisuue across pan-caners. (D-E) 
Immunofluorescence microscopy analysis shows the expression of COL1A1 in control and knockdown cells (PC3 and DU145, Scale bar, 20μm); Results of qPCR the knockdown 
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(KD) efficiency of COL1A1. (F) The cell growth rate is evaluated in COL1A1-KD and control cells. (G) Apoptosis is determined in COL1A1-KD and control cells. (H) Transwell 
migration assays of the migration ability of prostate cancer cells (PC3 and DU145, magnification, Scale bar, 100μm) in the control or knockdown groups.  

 
Figure 7. (A) The experimental flowchart of orthotopic-xenograft prostate-tumor mouse models. (B) The experimental flowchart of mouse models of pulmonary metastasis via 
tail vein. (C) Orthotopic-xenograft prostate-tumor mouse models implanted with COL1A1-KD PC3 cells. Representative bioluminescent images of orthotopic prostate tumors. 
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Statistical calculation of the mean luminescence of the orthotopic xenograft tumors. (D) Bioluminescence of the lung metastatic nodules was detected by an in vivo 
bioluminescence imaging system. (E) Representative images of isolated lung tissues from the COL1A1_NC group and the COL1A1_SH group. Representative images of 
hematoxylin–eosin staining of lung slice from COL1A1_NC group and the COL1A1_SH group, Scale bar, 1mm. The number of metastatic nodules in the lungs from different 
groups. *, **, and *** represent P<0.05, P<0.01, and P<0.001, respectively. (F-G) The protein expression of COL1A1 in different Gleason score subtypes in PCa tissues by IHC, 
Scale bar, 100μm. (H) The survival curves of COL1A1 H score with were estimated by the Kaplan-Meier plotter. (P = 0.0073, Log-rank test). Comparison of bRFS between 
patients with a high H score and patients with a low H score was undertaken using the median value of the H score as the cutoff. 

 

Discussion  
Recent studies have highlighted the synergistic 

effects of ageing-related changes in immune and 
stromal cell populations, leading to the progression of 
tumor cells. However, the comprehensive character-
istics of the ageing microenvironment mediated by 
integrated AME regulators remain unclear. In this 
study, we identified three AME regulatory patterns 
(AME-A, AME-B, and AME-C) associated with 
distinct immune phenotypes (immune-desert, 
immune-inflamed, and immune-excluded). There has 
been a study revealing that TME plays an essential 
part in tumor progression and immunotherapeutic 
effect[31]. In addition, infiltrating levels of 
CD4+/CD8+ T cells, NK cells, M1 macrophages and 
inflammatory cytokines in tumors have been found 
related to the immune response degree[32, 33].  

We observed significantly elevated levels of 
tumor-infiltrating lymphocytes and PD-1/L1 in the 
AME-B pattern, suggesting their potential value for 
predicting immunotherapeutic benefits. A recent 
study has reported that the activation of EMT and 
TGF-β pathways impede lymphocyte cells from 
penetrating into the tumor parenchyma[34]. Specific 
molecular inhibitors targeting TGF-β were capable of 
reshaping TME (e.g. reprogramming of peritumoral 
stromal fibroblasts) and restoring anti-tumor 
immunity[35, 36]. Based on these evidences, we 
proposed that PCa patients with the AME-C pattern 
might benefit from the combination of ICB agents and 
TGF-β blockade treatment. 

In addition to the establishment of the AMI 
quantification system, which accurately assesses 
patients' survival risk and guides personalized 
treatment strategies, we found that AMI was 
positively correlated with worse clinicopathological 
features and served as an independent risk factor for 
PCa patients. Remarkably, AMI was associated with 
MSI-H status, suggesting its potential as a preferable 
alternative to genomic aberrations. Considering the 
breakthrough in immune checkpoint inhibitor (ICI) 
therapy, we evaluated the association between AMI 
and predictors of immune response, including TMB, 
PD-L1, IPS, and TIDE scores[37-39]. We observed a 
significant correlation, indicating that AME regulators 
could influence the effectiveness of immunotherapy. 
Furthermore, the AMI demonstrated predictive value 
in distinguishing responders from non-responders in 
cohorts undergoing anti-PD-1/PD-L1 immunothe-

rapy. To facilitate clinical decision-making, we 
developed an AMI-based nomogram for clinicians as 
a valuable reference tool. Significant attempts have 
been made in previous studies to develop models for 
predicting the prognosis of patients with PCa using 
RNA-sequencing data and clinical features[26, 28, 30]. 
However, few models have been practiced clinically. 
The nomogram we constructed showed superior 
discrimination and calibration, with an AUC value of 
0.846 for predicting 5-year bRFS in the TCGA-PRAD 
cohort.  

Most ARGs included in the signature are closely 
associated with the initiation, proliferation and meta-
stasis of tumors. COL1A1 is a promising biomarker 
and potential therapeutic target for hepatocellular 
carcinoma and facilitates the metastasis of breast and 
ovarian cancers[40, 41]. BGLAP is highly expressed in 
pancreatic cancer cells and promotes tumor growth 
and invasion[42]. However, few studies have 
described the role of COL1A1 and BGLAP in PCa. We 
found that patients with higher stage had higher level 
of AMI. And more COL1A1 and BGLAP are expressed 
in the tumor than normal prostate by analyzing the 
spatial transcriptomics data. Then experiments in vivo 
and in vitro were conducted to assess the influence of 
these two genes in PCa on proliferation, migration 
and apoptosis. The experimental results showed that 
COL1A1 and BGLAP knockdown inhibited PCa 
proliferation and migration and promoted apoptosis. 

In addition to COL1A1 and BGLAP, the other six 
genes in the signature have been reported to be 
associated with cancers in both basic and clinical 
studies. A study of Hill et al. demonstrated that 
DDC-induced chronic inflammation could prompt 
rapid progression of intrahepatic cholangiocarci-
noma[43]. NR5A1 is an orphan nuclear receptor which 
is proved to be essential for sexual differentiation and 
development of multiple endocrine organs, as well as 
the proliferation of cancer cells[44]. Evidences have 
shown that PDCD4 plays a critical role in the 
progression of several tumors[45-47], and serves as a 
tumor suppressor in PCa to modulate tumor growth 
and castration resistance[48]. Furthermore, PITX3 has 
been reported to be involved in mouse brain 
development[49], and methylation of PITX3 promoter 
is a prognostic biomarker for BCR-free survival in 
patients with PCa after radical prostatectomy[50]. 
KRTAP4-3 is a keratin-associated protein involved in 
ageing and hair cycle in various tissues. However, 
specific mechanisms about how KRTAP4-3 affects 
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tumor progression have not been elucidated. ANXA3 
expression is related to the tumorigenesis and devel-
opment of breast cancer[51], and cancer-associated 
fibroblasts contribute to cisplatin resistance by 
regulating ANXA3 in lung cancer cells[52].  

To better understand the underlying mecha-
nisms of ARGs in mediating the differential prognosis 
of patients with PCa, we performed GSEA analyses 
and found that ARGs were involved in major 
cancer-related signaling pathways and immune 
related pathways. These results provide a foundation 
for further study on the mechanisms of ARGs in PCa. 
Besides, research suggests cellular senescence often 
triggers an immune response in TME[53], and 
immune cell infiltration in TME promotes tumor 
growth[54]. However, the underlying mechanisms of 
ARGs in modulating immune cells are relatively 
unclear in PCa. In this study, the high-AMI group 
showed higher infiltration levels of activated NK cells, 
follicular helper T cells and plasma cells. However, 
low-risk patients exhibited higher infiltration levels of 
resting memory CD4 T cells and M2 macrophages. 
Future studies are required to explore the exact 
prognostic relevance of these cells.  

To assess the response to chemotherapy and 
antiandrogen therapy, we evaluated the expression of 
Ki-67 and the response to androgen in relation to the 
high and low AMI groups. Our findings demons-
trated that patients in the low-AMI group exhibited 
better responses to docetaxel and bicalutamide, which 
were consistent across the four independent PCa 
cohorts (TCGA, GSE54460, MSKCC, and DKFZ). 

Additionally, we aimed to explore the thera-
peutic potential of a combined treatment involving an 
androgen receptor antagonist (bicalutamide) and a 
XIAP inhibitor (embelin) to suppress prostate cancer 
growth. To overcome the limitations associated with 
conventional solubilization drugs, we employed 
polymeric micelles for intratumoral injections in 
xenograft models. However, improvements are 
necessary for systemic administration, such as 
expanding the "cargo" space and selecting superior 
hydrophobic blocks in the copolymer to enhance drug 
solubilization. Overall, the AME cluster, AMI, and 
critical ARGs collectively contribute to the intricate 
interplay between the immune system, fibroblasts, 
immune function regulation, and the inflammatory 
milieu within the tumor microenvironment. 
Understanding these factors can provide insights into 
the immune response, tumor progression, and 
potential therapeutic strategies for cancer treatment. 

Nevertheless, this study has a few limitations. 
Firstly, the predictive value of the AME signature in 
immunotherapy response should be validated in a 
prospective immunotherapy cohort. Secondly, 

considering the intratumoral heterogeneity and 
technical variations in transcriptome sequencing, the 
scRNA-seq data of samples should be increased in 
future clinical studies. Thirdly, the development of a 
standardized commercial gene detection kit based on 
the eight signature genes, facilitating automated AMI 
calculation, would be beneficial. Finally, the biological 
mechanisms underlying the signature genes, 
particularly COL1A1 and BGLAP, remain unclear and 
require further investigation. 

Conclusions  
In this study, we comprehensively evaluated the 

regulatory patterns of the tumor ageing environment 
in 813 PCa patients based on 36 AME regulators and 
found the AME distribution difference among these 
patterns. This integrated analysis revealed that 
dysregulation of the ageing microenvironment 
contributes to the regulation of tumor immunity. In 
addition, we constructed an 8-gene signature 
associated with the tumor ageing microenvironment, 
which can accurately predict the BCR of PCa. Patients 
with higher AMI were more likely to develop BCR, 
had higher clinicopathological stage and grade, and 
were less likely to respond to immunotherapy, 
chemotherapy and antiandrogen therapy. And our 
study demonstrated that the combination of XIAP 
inhibitor (embelin) and an androgen receptor 
antagonist (bicalutamide) can regress prostate cancer 
tumors. Besides, COL1A1 and BGLAP can help to 
understand the underlying mechanisms of AME 
regulators in the progression of PCa.  
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