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Abstract 

Liquid‒liquid phase separation (LLPS) is a phenomenon driven by weak interactions between 
biomolecules, such as proteins and nucleic acids, that leads to the formation of distinct liquid-like 
condensates. Through LLPS, membraneless condensates are formed, selectively concentrating specific 
proteins while excluding other molecules to maintain normal cellular functions. Emerging evidence shows 
that cancer-related mutations cause aberrant condensate assembly, resulting in disrupted signal 
transduction, impaired DNA repair, and abnormal chromatin organization and eventually contributing to 
tumorigenesis. The objective of this review is to summarize recent advancements in understanding the 
potential implications of LLPS in the contexts of cancer progression and therapeutic interventions. By 
interfering with LLPS, it may be possible to restore normal cellular processes and inhibit tumor 
progression. The underlying mechanisms and potential drug targets associated with LLPS in cancer are 
discussed, shedding light on promising opportunities for novel therapeutic interventions. 
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1. Introduction 
Cancer development is an intricate process 

driven by randomly occurring mutations and genetic 
alterations. The complexities of cancer biology involve 
various factors, such as dysregulated signaling 
pathways leading to excessive cell proliferation, 
mechanisms that confer resistance to cell death, 
evasion of growth suppression mechanisms, sus-
tained replicative potential, promotion of angioge-
nesis, and cellular invasive properties responsible for 
tissue invasion and metastasis (1,2). Despite the 
substantial progress in identifying the primary 
drivers of genetic mutations in cancer development, 
the precise pathological mechanisms underlying these 
processes are incompletely elucidated (3). 

Eukaryotic cells are equipped with organelles 

that generate distinct chemical microenvironments to 
facilitate various biological processes. Through spatial 
segregation, various proteins and macromolecules are 
compartmentalized within subcellular structures, 
allowing the precise spatial and temporal control of 
complex biochemical reactions (4). In addition to 
membrane-bound organelles, membraneless struc-
tures, such as stress granules (SGs), Cajal bodies, and 
promyelocytic leukemia (PML) nuclear bodies 
(NBs),are essential for maintaining the normal 
functionality of eukaryotic cells. Liquid‒liquid phase 
separation (LLPS) is a cellular phenomenon 
characterized by the spontaneous segregation of 
macromolecules into dense and dilute phases, 
resulting in the formation of biomolecular 
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condensates (Figure 1A) (5,6). These condensates 
generate a heterogeneous cellular environment, 
selectively enriching proteins and nucleic acids. They 
possess unique properties that facilitate biomolecule 
concentration and organization (Figure 1B) (7,8). 

The establishment of interaction networks 
involving multivalent proteins or nucleic acids is 
crucial for LLPS and is facilitated primarily by 
peptides with folded modular domains, intrinsically 
disordered regions (IDRs), or polymerizing domains 
(9). Cancer-associated proteins and mutations can 
modulate the abundance and formation of conden-
sates by impacting LLPS, thereby driving aberrant 
cellular activities and promoting tumorigenesis 
(Figure 1C) (10–13). This review presents an overview 
of the impact of LLPS on the development and 
progression of diverse cancer types, including 
hematological malignancies and solid tumors (Table 
1). Furthermore, we discuss potential therapeutic 
approaches targeting LLPS that could be employed in 
cancer treatment strategies. 

2. LLPS in leukemia and myeloma 
2.1 NUcleoPorin 98 (NUP98) fusion protein 
and acute myeloid leukemia (AML) 

LLPS is a pivotal molecular alteration that 
promotes tumorigenicity. Recurrent gene fusions 
involving IDRs and chromatin-binding proteins are 
commonly detected in various cancer types, notably, 

leukemia and sarcoma (14–16). 
NUP98 is a constituent of the nuclear pore 

complex that facilitates macromolecule transport 
between the nucleus and cytoplasm (17). The 
discovery of the NUP98-HOXA9 fusion in AML 
patients with the t(7;11)(p15;p15) translocation 
marked the first identification of NUP98 rearrange-
ment. Since that discovery, more than 31 distinct 
fusion partner genes of NUP98 have been identified in 
various hematological malignancies, including T-cell 
acute lymphoblastic leukemia (18), chronic myeloid 
leukemia (CML) (19), and AML (20). 

The intrinsically disordered FG domain within 
the NUP98 IDR-containing N-terminus has been 
shown to undergo spontaneous phase separation, 
forming FG particles (Figure 2A). These dense 
molecules repel inert macromolecules while allowing 
the entry of nuclear transport receptors carrying 
necessary cargo (21). NUP98 fusion proteins induce 
substantial modifications in the composition of 
biomolecular condensates, exhibiting characteristics 
distinct from those of native NUP98. Through 
associations with various cofactors, NUP98 fusion 
proteins modulate transcriptional changes. The FG 
domain of the NUP98 fusion protein is important for 
its specific subcellular localization and the induction 
of downstream leukemia-associated gene expression 
through LLPS (22). This process is essential for 
establishing a temporospatial subcellular environ-

 

 
Figure 1. The formation of biomolecular condensates through LLPS. (A) The process of LLPS. Weakly multivalent interaction exists among scaffold proteins or 
between proteins and nucleic acids. External or internal stress can lead to LLPS. Biomolecules and their intercalating substrates maintain high concentrations in condensates 
while other proteins or substrates are excluded. (B) Nuclear and cytoplasmic condensates in eukaryotic cells. (C) Cellular functions and proteins that related to LLPS in cancer 
cells. IDR: intrinsically disordered regions; LLPS: liquid-liquid phase separation. AR: androgen receptor; ER: Estrogen receptor.  
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ment, promoting chromatin remodeling, and altering 
gene expression patterns. Nuclear puncta containing 
multiple NUP98 fusion proteins (e.g., NUP98-NSD1, 
NUP98-HOXA9, and NUP98-HD) have been 
observed (23–25). It can thus be inferred that NUP98 
fusion proteins associate with transcriptional 
cofactors in biomolecular condensates, which function 
as transcription centers to promote aberrant 
transcriptional programs (26). 

Ahn et al. conducted a study demonstrating the 
essential LLPS-related role of IDRs in NUP98-HOXA9 
fusion proteins (27). These authors elucidated the role 
of NUP98-HOXA9 phase separation in enhancing the 
ability of chimeric transcription factors to interact 
with and bind to specific chromatin domains, thus 
enabling long-range interactions between oncogene 
promoters and enhancer elements (27). Chandra et al. 
further showed that LLPS could drive the formation 
of NUP98-HOX9 nuclear puncta. The intermolecular 
interactions in the FG-repeat domain of NUP98-HOX9 
and the heterotypic DNA binding regulated by the 
homeodomain of HOX9 are the driving forces of LLPS 
in vitro (28). The LLPS dynamics of NUP98-HOXA9 

exhibited a direct correlation with the upregulation of 
genes associated with cell transformation and 
leukemogenesis (29). Similarly, fusion proteins such 
as NUP98–PRRX1, NUP98–KDM5A, and NUP98–
LNP1 were observed to form nuclear condensates and 
induce the transformation of hematopoietic stem cells 
(28). 

In summary, NUP98 fusion proteins play a 
leukemogenic role in hematopoietic cells, partially 
through LLPS. NUP98 fusion proteins are recognized 
as significant risk factors for leukemia. Thus, targeting 
NUP98 fusion proteins and NUP98-mediated LLPS 
constitutes a promising therapeutic approach for 
AML. Heikamp et al. demonstrated that inhibiting the 
menin–MLL1 protein complex using VTP50469 could 
inhibit leukemogenesis in NUP98-rearranged leuke-
mia models by disrupting interactions between 
NUP98 fusion proteins and chromatin. Additionally, 
administration of VTP50469 resulted in improved 
survival outcomes in mice with NUP98-rearranged 
leukemias (29), highlighting the potential of 
VTP50469 as a targeted agent for the treatment of 
patients with NUP98-rearranged leukemias. 

 
 

Table 1. Main LLPS-related biomolecules and their roles in different cancer types.  

Cancer type Biomolecule involved in 
LLPS 

Related condensates Biological role of biomolecules Reference 

Leukemia and myeloma      
 

Myeloid leukemia NUP98 fusion proteins Signaling puncta Promotion of aberrant transcriptional programs (21,22) 
  YTHDC1 SEs Suppression of myeloid leukemic differentiation (63,64) 
PML PML-RARα fusion proteins PML NBs Suppression of oncogenic pathways (32,44) 
T-cell acute lymphoblastic 
leukemia 

TAL1 SEs Activation of oncogenic transcriptional programs (153) 

CML BCR-ABL fusions SGs Inhibition of BCRA1 mRNA translation and recruitment of 
downstream signaling proteins 

(57,58) 

Myeloma KRAS SGs Increased formation of SGs (59) 
Solid cancers      

 

Ewing sarcoma EWS-FLI1 fusions Transcription condensates Activation of oncogenic transcriptional programs (67–69) 
Liposarcoma FET family members Transcription condensates Activation of oncogenic transcriptional programs (71) 
Synovial sarcoma SS18 Transcription condensates Activation of oncogenic transcriptional programs (72) 
Prostate cancer SPOP and DAXX Nuclear speckles Degradation of oncoproteins (76) 
  AR and MED1 SEs Androgen resistance (79,81,82) 
Pancreatic cancer KRAS SGs Enhancement of tumor cell adaptability through increased SG 

formation 
(88,89) 

Breast cancer MED1 and BRD4 SEs Activation of oncogenic transcriptional programs; tamoxifen 
resistance 

(94,95) 

Lung cancer EML4-ALK fusion Signaling puncta Initiation of lung tumorigenesis (99,101) 
Liver cancer G6PC Glycogen compartments Activation of YAP signaling pathways (103) 
Multiple cancers YAP and TAZ Transcription condensates Activation of YAP signaling pathways; anti-PD-1 

immunotherapy resistance 
(109–111) 

  SHP2 Signaling puncta Stimulation of downstream MAPK and ERK1 signaling 
pathways 

(121) 

  53BP1 DNA repair foci DNA damage repair (125,128) 
  PARP DNA repair foci DNA damage repair (131) 
  mTORC1 SGs Cancer cell survival (154) 
  CDK7, CDK12, CDK13 Transcription condensates Activation of oncogenic transcriptional programs (155,156) 
  NEAT1 Nuclear paraspeckles Chemoresistance (157) 
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Figure 2. Roles of LLPS in leukemia and myeloma. (A) NUP98-HOXA9 fusion protein forms transcription condensates and leads to the activation of 
leukemogenesis-related genes. (B) The formation of PML NB was interrupted in promyelocytic leukemia with PML-RARα fusions. The disruption of PML NB in APL is mainly 
caused by the neddylation of the RARα part at the PML-RARα fusions, promoting its DNA-binding competency and hampering the further LLPS process. (C) M6A-mRNA needs 
YTHDC1 to undergo LLPS and form YTHDC1-m6A condensates in the nucleus to keep cell survival and maintain the undifferentiated states. YTHDC1-m6A condensates 
accumulate in acute myeloid leukemia, while if YTHDC1 is depleted in the AML cells, cell death and differentiation are promoted. LLPS: liquid-liquid phase separation; PML: 
promyelocytic leukemia. NB: nuclear body.  

 

2.2 PML NBs and PML 
PML NBs are phase-separated, stress-sensitive 

nuclear condensates implicated in multiple cellular 
functions, such as transcriptional regulation, cell 
proliferation control, stem cell self-renewal mainten-
ance, and protein modification (30,31). The PML 
protein is an important component of and scaffold for 
PML NBs (32). It contains a conserved N-terminal 
RING finger/B-box/coiled-coil (RBCC) domain that 
governs the assembly of PML NBs (33–35), while its 
C-terminus contains a SUMO-interacting motif (SIM) 
for binding sumoylated proteins (36). These modular 
domains and interaction motifs are essential for 
driving LLPS and the formation of PML NBs (37). 
Extensive evidence indicates the tumor-suppressive 
functions of PML NBs mediated through multiple 
mechanisms, including sequestering proteins, serving 
as hubs for posttranslational modifications (PTMs), 
and regulating protein interactions (38,39). 
Furthermore, PML NBs influence critical cellular 
pathways such as the P53 and AKT signaling and 
DNA damage repair pathways (38,39). 

In acute promyelocytic leukemia (APL), the PML 
gene undergoes a chromosomal translocation with 
retinoic acid receptor-α (RARα), resulting in the 

formation of the PML-RARα fusion protein, which is 
centrally involved in the initiation and progression of 
APL (40). PML-RARα fusions are found in over 95% 
of APL patients (40). Fusion of the PML gene with 
RARα in APL has been associated with two primary 
breakpoints, specifically, between exons 3-4 and 
exons 6-7, as evidenced by previous studies (41–43). 
Aberrant LLPS of PML–RARα resulting from 
neddylation is responsible for the impairment of PML 
NB assembly in APL. The neddylation-mediated 
enhancement of DNA binding of PML–RARα to the 
RARα domain interferes with LLPS of the PML 
domain, thereby hindering the assembly of PML NBs 
(Figure 2B) (44). 

Potential therapeutic strategies to restore PML 
NBs have been explored. Retinoic acid (RA) and 
arsenic trioxide therapies have shown promise in 
inducing the re-formation of PML NBs and 
restoration of LLPS; these therapies promote 
apoptosis through activation of p53, localization of 
HIRA, and degradation of unwanted proteins (45). 
Various synthetic molecules such as emodin, 
MLN4924, and TSA, as well as natural compounds 
such as H2O2, EGF, and SFN, have also been found to 
increase the PML protein abundance (46–48). Notably, 
the neddylation inhibitor MLN4924 has demonstrated 
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efficacy in suppressing the development of APL cells. 
Current research efforts are focused on 

identifying the most effective combination regimens 
that maximize anticancer activity by enhancing PML 
protein accumulation. These studies offer valuable 
insights into potential cancer treatments based on 
targeting LLPS and PML NBs. 

2.3 SGs, CML and myeloma 
SGs are cytoplasmic ribonucleoprotein granules 

that form during cellular stress. SGs are formed via 
LLPS through a complex network of protein‒RNA 
interactions with the G3BP1 protein as the central 
node (49). Various stressors, such as extreme tempe-
rature, oxidation, UV radiation, and endoplasmic 
reticulum or mitochondrial stress, induce the 
formation of SGs (50). However, the precise 
mechanisms by which SGs contribute to tumor 
development and assist cancer cells in coping with 
tumor-related stress remain incompletely understood 
(51,52). 

CML is associated with chromosomal 
translocation between the ABL gene on chromosome 9 
and the BCR gene on chromosome 22. This genetic 
abnormality results in the production of the BCR-ABL 
fusion protein, which leads to persistent activation of 
the tyrosine kinase activity of BCR-ABL and is the 
pathophysiological cause of CML. Previous studies 
have demonstrated the cytoplasmic localization of 
BCR-ABL; however, its specific subcellular localiza-
tion remains unclear and disputed (53). Evidence 
suggests that BCR-ABL proteins are present in 
granule-like structures in myeloid and lymphoid cells 
(53,54). These BCR-ABL proteins are predicted to 
possess long IDRs, which endow weak multivalency 
and potentially facilitate phase separation and 
granule formation (55,56). Kashiwagi et al. revealed 
that BCR-ABL-positive granules were SGs (57). The 
kinase activity of ABL and the N-terminal region of 
BCR are crucial for the phase separation of BCR-ABL 
(57). The granules formed as a result of BCR-ABL 
fusion play a pivotal role in promoting leukemogenic 
activity by inhibiting the mRNA translation of the 
tumor suppressor gene BCRA1 and recruiting 
downstream signaling proteins (57,58). Consequently, 
targeting the process of ABL-BCR phase separation 
could constitute a novel therapeutic strategy for CML. 

The receptor tyrosine kinase/RAS/MAP kinase 
(MAPK) pathway is an oncogenic pathway with 
widespread aberrancies in human cancers; indeed, 
20%-30% of cancer patients harbor RAS (KRAS, 
HRAS, or NRAS) mutations. Approximately 20% of 
multiple myeloma patients harbor KRAS mutations, 
leading to activation of the MEK/ERK pathway. 
Qiang et al. discovered that mutant KRAS signifi-

cantly increases SG formation in multiple myeloma 
cells through 15-deoxy-delta(12,14)-prostaglandin J(2) 
(15d-PGJ2) (59). Additionally, inhibition of 
cyclooxygenase-2 (COX2) enhances the sensitivity of 
KRAS-mutant multiple myeloma cells to bortezomib 
(59). Therefore, targeting the formation of SGs could 
constitute an effective approach for treating 
KRAS-mutant myeloma (59). 

2.4 N6-methyladenosine (m6A) and myeloid 
leukemia 

m6A is the predominant chemical modification 
detected on mRNAs and critically influences myeloid 
leukemogenesis (60,61). However, the precise impact 
of m6A on different oncogenic processes across 
cellular contexts remains unknown. YTH 
domain-containing proteins (YTHDF 1-3), which 
serve as m6A readers, are involved in mediating the 
effects of m6A (62). These proteins also possess an 
N-terminal prion-like low complexity domain (LCD), 
which is believed to be able to undergo LLPS (63). 
Ries et al. demonstrated that m6A-binding proteins 
such as YTHDF1, YTHDF2, and YTHDF3 undergo 
LLPS facilitated by mRNAs containing multiple 
m6A-modified bases, both in cells and in vitro. During 
LLPS, mRNAs with multiple m6A modifications act 
as multivalent scaffolds for m6A-binding proteins and 
simultaneously bring their LCDs into proximity, 
facilitating LLPS (64). 

Cheng et al. further revealed that the m6A reader 
protein YTHDC1 undergoes LLPS by binding to m6A, 
forming nuclear YTHDC-m6A condensates in 
myeloid leukemia cells. The IDR domain and 
m6A-binding capability of YTHDC1 are essential for 
this LLPS, and the abundance of YTHDC-m6A 
condensates serves as the basis for acute myeloid 
leukemogenesis (Figure 2C) (65). Given the high 
prevalence of abnormal m6A modifications in 
leukemia, targeting m6A and the associated LLPS 
process may constitute a promising therapeutic 
approach for myeloid leukemia. 

3. LLPS in solid cancers 
3.1 LLPS of fusion proteins in sarcomas 

Ewing sarcoma is an aggressive malignancy that 
predominantly affects children and young adults and 
primarily involves bones and soft tissue. The presence 
of the EWS-FLI1 fusion protein, detected in 
approximately 85% of Ewing sarcoma cases, is 
considered a distinctive characteristic of this 
malignancy (66). The fusion protein responsible for 
Ewing sarcoma is generated by the fusion of the LCD 
of Ewing sarcoma RNA-binding protein 1 (EWSR1) 
with the transcription factor Friend leukemia virus 
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integration 1 (FLI1) (67). Notably, fusions of the 
N-terminal prion-like domains of EWS to FLI1 have 
been implicated in facilitating protein aggregation 
through LLPS (68). Boulay et al. demonstrated that the 
interaction between EWS-FLI1 and BAF chromatin 
remodeling complexes is dependent on specific 
tyrosine residues within the prion-like domain of 
EWSR1 (69). LLPS-mediated recruitment of GGAA 
microsatellites to BAF complexes has been proposed 
as a mechanism that activates the aberrant 
transcriptional program driving Ewing sarcoma 
progression, encompassing processes such as DNA 
binding, BAF complex recruitment, enhancer 
activation, and target oncogene activation (69) (see 
Figure 3A). 

In liposarcoma, chromosomal translocations 
often result in fusion events involving the prion-like 
domains of other proteins of the FET family and 
transcription factors (70). It is reasonable to speculate 
that fusion proteins associated with FUS and TAF15 
may promote the formation of abnormal condensates 

at enhancer or promoter sites, leading to the 
activation of downstream tumorigenic transcriptional 
processes. Davis et al. demonstrated that the 
oncogenic fusion protein FUS-DDIT3 forms 
condensates through LLPS facilitated by its prion-like 
domain (71). These nuclear FUS-DDIT3 condensates 
recruit mammalian SWI/SNF complexes, thereby 
driving transcription through ectopic chromatin 
remodeling (71). The same study further indicated 
that other transcriptional regulators containing 
prion-like domains can interact with mSWI/SNF 
chromatin remodelers to orchestrate similar 
transcriptional programming (71). 

Given the notable involvement of FET family 
members in sarcomas, targeting the aberrant LLPS 
process mediated by FET fusion proteins could 
constitute a therapeutic approach. Disrupting the 
formation of abnormal condensates at enhancer or 
promoter sites holds promise for inhibiting 
downstream tumorigenic transcriptional processes 
facilitated by fusion proteins. This strategy may 

 

 
Figure 3. Roles of LLPS in solid tumor. (A) EWS-FLI fusions acquire the ability of LLPS in Ewing’s sarcoma. EWS-FLI1 fusion protein contains the prion-like domain on the 
N terminal and the DNA binding domain on the C terminal. The EWS-FLI1 fusion proteins undergo LLPS and form EWS-FLI1 condensates. These condensates then bind to the 
GGAA microsatellites of DNA, recruiting the BAF complex and acting as super-enhancers to activate oncogenic expression. BAF: BRG1–BRM-associated factor. (B) Mutant 
SPOP could not form biomolecular condensates in prostate cancer. Wild-type SPOP could self-associate to dimers, interact with the IDR domain of DAXX, and drive the LLPS. 
The formation of SPOP-DAXX condensates could accelerate the polyubiquitination of DAXX. For mutant SPOP in prostate cancer. For prostate cancers with mutations in the 
MATH region of SPOP, LLPS cannot proceed, and thus the ubiquitinated degradation of DAXX is terminated. (C) Sensitivity to tamoxifen in breast cancer patients is related to 
the magnitude of LLPS. In tamoxifen-sensitive breast cancer, MED1, BRD4, together with TFs and RNA polymerase II undergo LLPS and form transcriptional condensates at the 
site of super-enhancers. With the upregulation of MED1 expression, the volume of the condensate containing MED1 increases and relatively dilutes the tamoxifen concentration 
in the condensate. MED1: mediator complex subunit 1; BRD4: bromodomain-containing protein 4.  
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involve the development of small molecules or 
therapeutic agents designed to interfere with the 
LLPS process or disrupt interactions between fusion 
proteins and their associated complexes. Remarkably, 
recent studies by Ryan et al. demonstrated that 
engineered protein disaggregases, such as modified 
Hsp104 variants, can antagonize the accumulation of 
FUS-CHOP and EWS-FLI fusion protein condensates 
formed by LLPS, thus reducing the toxicity of these 
fusion proteins (68). These findings highlight the 
immense therapeutic potential of targeting the LLPS 
process in sarcoma. 

Along with FET family members, LLPS has been 
shown to be involved in the oncogenicity of the 
SS18-SSX fusion protein. Phase separation of SS18 or 
SS18-SSX is initiated through self-association of their 
IDRs, which subsequently facilitates the recruitment 
of BRG1. Notably, the tyrosine residues within the 
QPGY domain are crucial for triggering this LLPS 
process. Disruptions in the LLPS of SS18-SSX or its 
interaction with BRG1 have been observed to impair 
the transformation of NIH3T3 cells, highlighting the 
potential of targeting this LLPS process as a 
promising therapeutic strategy (72). 

3.2 Cancer-associated speckle-type pox virus 
and zinc finger (POZ) protein (SPOP) 
mutation disrupts protein degradation in 
prostate cancer 

SPOP acts as a substrate adaptor for Cullin 3 
RING E3 ubiquitin ligases, functioning as a tumor 
suppressor by facilitating the degradation of various 
oncoproteins. These oncoproteins include the 
androgen receptor (AR), BRD4, death-domain- 
associated protein (DAXX), PD-L1, and Myc (73). 
Through its involvement in the ubiquitination 
process, SPOP regulates various cellular activities, 
such as cellular metabolism, senescence, and hormone 
signaling (74). SPOP mutations are observed 
predominantly in prostate cancer (75). These 
cancer-associated mutations are frequently located in 
the MATH domain of SPOP, which is responsible for 
substrate binding. Consequently, these mutations 
disrupt the normal interaction with and degradation 
of substrates, leading to accumulation of the 
substrates (76,77). 

Experimental evidence has demonstrated that 
SPOP exhibits self-association properties and can 
form oligomeric structures (78). Bouchard et al. 
observed the colocalization of SPOP and DAXX in 
liquid nuclear organelles, and in vitro, their binding 
triggered phase separation mediated by multiple 
weak SPOP-binding motifs in DAXX (79). Prostate 
cancer-associated mutations, such as W131F and 
F133V, within the MATH domain of SPOP have been 

found to disrupt the interaction between SPOP and 
DAXX. This disruption interferes with the phase 
separation process and inhibits substrate 
ubiquitination (Figure 3B) (79). These findings 
elucidate that substrate-directed LLPS may be a 
universal mechanism contributing to proteostasis and 
that mutations in SPOP can lead to dysregulated 
ubiquitination activity. 

Bouchard et al. also observed that SPOP induces 
LLPS of AR (79), a critical transcription factor and the 
main oncogenic driver in prostate cancer. AR 
activation requires its interaction with the coactivator 
MED1, which contains IDRs and can undergo LLPS 
with itself or other transcription factors (80). Zhang et 
al. demonstrated that ARs are enriched in 
MED1-dependent condensates, promoting subseq-
uent transcriptional regulation in prostate cancer cell 
models (81). The DNA-binding domain of full-length 
AR can bind RNA and drive phase separation in an 
RNA-dependent manner. However, in AR-v7 
variants, the abundance of AR-rich condensates is 
diminished due to loss of the interaction between the 
ligand-binding domain and activation function 1 
(AF1) of AR, resulting in impaired regulation of AR's 
transcriptional role in prostate cancer (82). Basu et al. 
developed a small molecule compound that 
covalently binds aromatic moieties to cysteines in the 
activation domain of AR and accumulates with LLPS 
of AR (83). This compound enhances the degradation 
of AR and suppresses AR-dependent transcriptional 
functions, exhibiting significant antitumor activity in 
prostate cancer models. Recently, through phase 
separation-based phenotypic screening, Jingjing Xie et 
al. identified a potential AR inhibitor, ET516, which 
selectively disrupts AR condensates and inhibits 
tumor growth in cells harboring resistance mutations 
in AR (84). These findings highlight the therapeutic 
potential of designing drugs that target the IDRs in 
oncogenic transcription factors to regulate their phase 
separation ability. 

3.3 KRAS mutation upregulates SG formation 
in pancreatic cancer 

KRAS mutation is a prevalent genetic alteration 
observed in pancreatic adenocarcinoma, lung adeno-
carcinoma, and colorectal cancer (85). Approximately 
90% of pancreatic cancers harbor KRAS mutations, 
most commonly the G12D mutation (86,87). The study 
by Grabocka et al. provided the first evidence that 
KRAS mutation alone is sufficient to upregulate SG 
formation. SGs confer advantages on cancer cells by 
promoting tumorigenesis and progression, offering 
protection against tumor-related stress (88). The 
upregulation of SG formation induced by mutant 
KRAS is mediated by an increase in the level of 
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15d-PGJ2, a secreted molecule that acts in both 
cell-autonomous and non-cell-autonomous manners 
to modulate the expression of its targets (88). The 
increased abundance of SGs associated with KRAS 
mutation is linked to stress resistance properties in 
cancer cells; thus, SGs are potential biomarkers for 
tumor fitness and drug responses (88). 

In pancreatic cancer cells carrying KRAS 
mutations, the activation of nuclear factor erythroid 
2-related factor 2 (NRF2) leads to upregulation of 
glycolysis, increased glutamine uptake, and reprog-
rammed glutaminolysis (89). Mukhopadhyay et al. 
demonstrated that 15d-PGJ2 activates NRF2 and 
facilitates the formation of SGs. Activation of NRF2 by 
15d-PGJ2 upregulates pathways involved in 
glutamine metabolism, thereby promoting chemo-
resistance in KRAS-mutant pancreatic cancers (90). 
Inhibitors of glutaminase, an enzyme involved in 
glutamine metabolism, can resensitize gemcitabine- 
resistant pancreatic cancer cells. Therefore, 
combination treatment with glutaminase inhibitors 
and chemotherapy holds promise as an effective 
therapeutic approach for patients with KRAS 
mutations. 

3.4 LLPS of MED1 condensates in breast 
cancer 

Estrogen receptor α (ERα)-positive breast cancer 
is the predominant subtype among hormone 
receptor-positive breast cancers (91). Treatment with 
tamoxifen, a selective modulator of ERs, is an effective 
therapeutic approach for managing ER-positive breast 
cancer in both pre- and postmenopausal individuals 
(92). However, the emergence of tamoxifen resistance 
presents a significant hurdle and is a primary 
contributor to mortality in breast cancer patients (93). 

The IDRs of MED1 and BRD4 play a crucial role 
in the formation of transcriptional condensates, which 
concentrate the transcription machinery, at superen-
hancers (SEs) (94). Following estrogen stimulation, 
ERα becomes integrated into MED1 condensates (94). 
Klein et al. demonstrated that in breast cancer cells, 
ERα associates with MED1 and undergoes 
condensation in a tamoxifen-sensitive manner (95). 
Overexpression of MED1 has been linked to 
tamoxifen resistance and worse survival outcomes in 
breast cancer patients (96). Tamoxifen treatment 
drives the dissociation of ERα from MED1 
condensates, as the drug selectively enters the 
condensates and competes with estrogen for binding 
(96). Upregulation of MED1 increases the volume of 
MED1-containing condensates, resulting in dilution of 
tamoxifen within the condensates and reducing the 
efficiency of ERα dissociation (Figure 3C) (96). These 
findings suggest that selective partitioning and 

concentration within condensates formed via LLPS 
may play a role in the pharmacodynamics of drugs 
and that alterations in these condensates could 
contribute to treatment resistance in breast cancer and 
other cancers. 

3.5 LLPS of anaplastic lymphoma kinase (ALK) 
fusions in lung cancer 

ALK fusions, particularly the EML4-ALK fusion, 
are recognized as oncogenic drivers in a subset of 
non-small cell lung cancers (97). The EML4-ALK 
fusion protein lacks a transmembrane domain and is 
localized primarily in the cytoplasm or microtubules 
(98). This fusion protein, constitutively active as a 
tyrosine kinase, plays a pivotal role in initiating lung 
tumorigenesis (99). While extensive studies have 
explored the oncogenic properties of EML4-ALK, the 
involvement of LLPS in regulating its function and 
contributing to lung cancer development has recently 
gained attention (100,101). 

Recent studies by Qin et al. have demonstrated 
that EML4-ALK variant 1 can form liquid-like 
condensates in the cytoplasm, with the EML4 region 
of the fusion protein playing a crucial role in 
condensate formation (101). Truncation experiments 
have revealed that the EML4-N fragment alone is 
sufficient to drive phase separation, while the ALK-C 
fragment remains dispersed. Moreover, mutations in 
aromatic residues within the EML4 region 
significantly impair phase separation, underscoring 
the importance of these residues in this process. 
Functional characterization of EML4-ALK 
condensates has elucidated their role in activating 
downstream signaling pathways. Disruption of the 
LLPS process hampers the hyperactivation of key 
signaling molecules, such as AKT, ERK1/2, and 
STAT3, which are crucial for promoting cell survival, 
proliferation, and angiogenesis (101). 

In summary, the emerging evidence of LLPS in 
ALK fusions, particularly EML4-ALK variant 1, 
emphasizes the significance of this cellular process in 
the pathogenesis of lung cancer. Understanding the 
role of LLPS in regulating the function of EML4-ALK 
and its downstream signaling pathways is expected to 
contribute to the development of novel therapeutic 
approaches for lung cancers with ALK fusions. 

3.6 Glycogen accumulation and LLPS in liver 
carcinogenesis 

Glycogen is the principal storage polysaccharide 
in hepatocytes, playing a vital role in liver metabolism 
and being linked to hepatocellular carcinoma 
development (102). Dysregulation of glycogen 
metabolism in premalignant liver lesions leads to 
impaired glycogen degradation and subsequent 
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accumulation (103). The accumulated glycogen 
undergoes phase separation, leading to the formation 
of the Laforin-Mst1/2 complex. This complex 
sequesters the Hippo kinases Mst1/2 within liquid 
droplets composed of glycogen, thereby removing 
their inhibitory effect on Yes-associated protein (Yap) 
(103). Dysregulation of glycogen accumulation and 
phase separation has significant implications for liver 
tumorigenesis. 

Research by Liu et al. has demonstrated that 
increased glycogen storage accelerates the develop-
ment of liver tumors, while reducing the glycogen 
content decreases tumor incidence (103). Addition-
ally, the interplay among glycogen accumulation, the 
Hippo signaling pathway, and downstream effectors 
such as Yap has been associated with liver 
enlargement and the formation of tumors (103). 

These findings highlight the importance of 
glycogen accumulation and phase separation in liver 
tumorigenesis. Understanding the mechanisms 
underlying the dysregulation of glycogen metabolism 
and its impact on signaling pathways such as the 
Hippo and Yap pathways yields valuable insights into 
the development of hepatocellular carcinoma. 
Targeting these processes could offer new therapeutic 
strategies for liver cancer. 

4. LLPS and potentially targetable 
proteins 
4.1 LLPS, YAP, and transcriptional coactivator 
with PDZ-binding motif (TAZ) 

LLPS plays an important role in the 
transcriptional programs regulated by YAP and TAZ, 
which are crucial regulators of the Hippo pathway 
(104). Activation of YAP and TAZ is involved in 
cancer cell survival and metastasis, tumor microen-
vironment remodeling, and immune evasion (105). 
However, in certain cases, these proteins have been 
found to exhibit tumor-suppressive activities in 
hematological malignancies and colorectal cancer 
(106–108). 

Recent research has provided insights into the 
formation of YAP and TAZ condensates upon 
exposure to hyperosmotic conditions. The formation 
of YAP condensates, driven by the IDR transacti-
vation domain, can occur in the nucleus and 
cytoplasm. These condensates contain TAZ and the 
transcription factor TEAD1, organized as SEs, and 
recruit RNA polymerase II to mediate the 
transcription of YAP target genes (109). Additionally, 
the interaction between YAP/TEAD and steroid 
receptor coactivator 1 (SRC-1) leads to the formation 
of SRC-1/YAP/TEAD condensates, which promote 

YAP transcription (110). Disruption of SRC-1 
condensates by the anti-HIV drug elvitegravir could 
suppress the proliferation of YAP-dependent tumor 
cells, showing the potential of targeting 
phase-separated condensates as a therapeutic strategy 
(110) (Figure 4A). 

In tumor cells, YAP condensates with formation 
driven by the coiled-coil domain and IDR are 
associated with anti-PD-1 immunotherapy resistance. 
These condensates act as transcriptional hubs in the 
tumor immune microenvironment, concentrating 
enzymes, transcription factors, and histone acetylases. 
Disruption of YAP condensates has been correlated 
with poor treatment outcomes and could be a 
potential target for combination treatment with 
immunotherapy (111). 

Similar to YAP, TAZ also undergoes LLPS and 
forms nuclear condensates in vitro and in vivo (112). 
TAZ condensates concentrate TEAD4, BRD4, MED1, 
and CDK9, enhancing the efficiency of transcription 
and enabling the activation of TAZ-specific 
downstream pathways. Moreover, unlike YAP, TAZ 
can form condensates at various protein and salt 
concentrations and various temperatures, a pheno-
menon facilitated by its ability to homodimerize 
through its coiled-coil domain. The Hippo signaling 
pathway negatively regulates LLPS of TAZ by 
promoting its phosphorylation via LATS/NDR 
kinases (112). Furthermore, participation of the 
paraspeckle protein NONO is required for TAZ phase 
separation, as it interacts with TEAD and Rpb1. 
Notably, NONO plays an essential role in 
TAZ-associated tumorigenesis in glioma, and 
elevated expression of NONO is correlated with 
unfavorable survival outcomes in patients with 
glioblastoma (113). 

4.2 LLPS and Src homology containing protein 
tyrosine phosphatase 2 (SHP2) 

During cellular processes, protein tyrosine 
kinases (PTKs) and protein tyrosine phosphatases 
(PTPs) perform indispensable functions in controlling 
signaling cascades. SHP2 is a nonreceptor PTP 
encoded by PTPN11 that dephosphorylates targeted 
proteins (114). Functionally, SHP2 acts as a central 
hub connecting various subcellular signaling path-
ways involved in cancer, such as the RAS/MAPK and 
PD-1/PD-L1 pathways (115–118). SHP2 dysregu-
lation is associated with several cancers, including 
breast cancer (115) and melanoma (119). Moreover, 
gain-of-function mutations in SHP2 are frequently 
observed in juvenile myelomonocytic leukemia and 
AML (120). 
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Figure 4. Disruption of LLPS by targeting related proteins. (A) Anti-HIV drug elvitegravir could bind to SRC-1 and prevent it from accessing the YAP/TEAD 
condensates. (B) SHP2 allosteric inhibitors moderate SHP2 mutant undergoing LLPS. Wild-type SHP2 has a well-folded PTP domain which is normally in a closed state. SHP2 with 
active or inactive mutants could transit the closed states of SHP2 conformation to open states. Mutant SHP2 could boost the activity of PTPase, drive the LLPS, and hyperactivate 
the Ras-ERK pathway. For SHP2 with active mutation, the high PTPase activity is acquired directly by the upregulated intrinsically PTPase activating, while for SHP2 with inactive 
mutation, it is mainly acquired from recruiting the wild-type SHP2. SHP2 allosteric inhibitors could stop the formation of SHP2 condensates by keeping SHP2 in closed states. 
EVG: elvitegravir; PTP: protein tyrosine phosphatase. 

 
Recent investigations conducted by Zhu et al. 

provided important insights into the modulatory role 
of LLPS in PTP activity, with a specific emphasis on 
SHP2 (121). Researchers have demonstrated that 
wild-type SHP2 can form biomolecular condensates 
in response to specific factors such as EGF and FGF, 
indicating that LLPS may contribute to the regulation 
of SHP2 activity (120). Notably, cancer-associated 
SHP2 mutants have a higher propensity for LLPS. 
LLPS induced by SHP2 mutation represents a 
gain-of-function mechanism that promotes 
downstream MAPK signaling, leading to ERK1/2 
activation (120). Importantly, Zhu et al. showed that 
SHP2 mutation-induced LLPS can be suppressed by 
allosteric inhibitors of SHP2 (120) (Figure 4B). These 
findings are particularly important considering that 
allosteric inhibitors of SHP2, including AB-3068, 
TNO155, RMC-4630, and RLY-1971, are currently 
under evaluation in clinical trials for solid cancers 
(114). Furthermore, Lin et al. have shown that LLPS 
could regulate the receptor tyrosine kinase (RTK) 
signaling through facilitating the formation of a 

signaling condensate comprising FGFR2, SHP2 and 
1-phosphatidylinositol 4,5-bisphosphate phospho-
diesterase gamma 1 (PLCγ1) (122). Together, these 
studies highlight the therapeutic potential of targeting 
LLPS, particularly by inhibiting SHP2-mediated 
condensate formation. 

4.3 LLPS and 53BP1   
Genomic instability is a defining characteristic of 

cancer cells, and preservation of genomic integrity 
relies heavily on the functionality of DNA damage 
response pathways (123). A key regulator in this 
pathway is 53BP1, which acts as a scaffold and 
facilitates the DNA damage response (124). 53BP1 
plays a role in binding to disrupted chromatin, 
recruiting other DNA double-strand break-responsive 
proteins, and promoting the synapsis of distal DNA 
ends during the repair process called nonhomologous 
end-joining (125). Furthermore, 53BP1 exerts direct 
regulatory control over the p53 tumor suppressor 
pathway, which plays a pivotal role in initiating cell 
cycle arrest, apoptosis, and the activation of other 
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antitumorigenic signaling cascades (125). 
Emerging research has substantiated the 

formation of DNA repair condensates facilitated by 
53BP1 via LLPS upon encountering DNA damage, 
specifically DNA double-strand breaks (126,127). 
Formation of these condensates is enhanced by long 
noncoding RNAs that assemble at sites of DNA 
damage (126,127). The 53BP1 DNA repair condensates 
serve as platforms for recruiting p53 and its 
coactivators, leading to stabilization of p53 and 
facilitating its function (126). Disruption of 53BP1 
condensates impairs downstream transcriptional 
induction and translation of p53 targets, indicating 
the necessity of these condensates for efficient DNA 
double-strand break repair (126). Furthermore, 
Ghodke et al. demonstrated that AHNAK, a 
component of the USP28-53BP1-p53-p21 network, can 
modulate G1/S checkpoint functions mediated by 
53BP1 and p53 activation on chromatin. Depletion of 
AHNAK induces the accumulation of 53BP1 and 
intensifies LLPS, consequently enhancing the 
activation of the p53 response (128). These findings 
suggest that disrupting the assembly of 53BP1 
condensates could dysregulate p53 and potentially 
impact the expression of downstream tumor 
suppressor genes. 

Overall, the formation of 53BP1 condensates 
through LLPS is an important mechanism in DNA 
repair and p53-mediated cellular responses to DNA 
damage, and perturbations in these condensates can 
have significant implications for cancer development. 
Further exploration into the assembly and modulation 
of 53BP1 condensates may yield crucial insights for 
the discovery of novel therapeutic strategies aimed at 
selectively targeting DNA repair pathways in cancer. 

4.4 LLPS and PARP family members 
PARP1, a nuclear protein, is the first discovered 

member of the PARP protein family and is involved in 
poly(ADP-ribose) (PAR) polymerization (129). PARP1 
functions as a writer of poly(ADP-ribosyl)ation 
(PARylation) by catalyzing the addition of ADP- 
ribose units to form negatively charged PAR chains 
on itself and other proteins, thereby regulating 
various pathways (130). PARP1 is indispensable for 
DNA repair mechanisms, stabilization of DNA 
replication forks, and alterations in chromatin 
structure (131). At loci undergoing DNA damage, 
PARP1 catalyzes the formation of extended PAR 
chains, thus initiating the assembly of DNA damage 
condensates through phase separation. This process is 
facilitated by the specific recruitment of FET proteins 
containing LCDs (132). Electrostatic interactions 
between PAR chains and LCDs promote phase 
separation, while aggregation-prone prion-like 

domains contribute to the amplification of this 
response, facilitating DNA repair processes (132). 

The advent of PARP inhibitors constituted a 
substantial breakthrough in anticancer therapeutics, 
particularly for tumors characterized by impaired 
homologous recombination repair, including breast, 
ovarian, pancreatic, and prostate cancers carrying 
BRCA1/2 mutations (133). However, considering the 
functional complexity of PARP1, additional drugs 
that target the phase separation process and DNA 
damage repair mechanisms mediated by PARP1 
could be developed. Further research in this area may 
provide insights into novel therapeutic strategies for 
cancer. By understanding and manipulating LLPS of 
PARP1, it might be possible to increase the 
effectiveness of PARP inhibitors or develop 
alternative approaches to target the DNA repair 
machinery in cancer cells. 

5. Approaches that target proteins via 
LLPS 

Traditional structure-based drug design relies on 
well-defined protein structures and pockets, which 
many oncoproteins, including transcription factors, 
may not have. Indeed, these proteins often lack folded 
structures and do not possess clearly defined pockets 
for drug binding. This limitation poses a substantial 
challenge in the development of therapies directed 
against these "undruggable" targets. However, the 
discovery of LLPS has provided new opportunities for 
targeting these proteins (Table 2). 

5.1 Targeting IDRs 
Targeting IDRs has emerged as a promising 

approach for disrupting LLPS and its associated 
pathogenic condensates. As previously described, 
IDRs are prevalent in proteins, especially onco-
proteins and transcription factors that lack 
well-defined structures. These IDRs play critical roles 
in LLPS by mediating interactions between proteins 
and nucleic acids, contributing to the formation of 
biomolecular condensates (134). 

Small molecule inhibitors that specifically bind 
to IDRs have shown potential in disrupting LLPS and 
modulating condensate formation. One approach to 
target IDRs is the use of small molecule inhibitors. 
These inhibitors are designed to bind specifically to 
the IDRs, disrupting their interactions and interfering 
with the assembly of condensates. For example, to 
target c-MYC, a well-known oncoprotein, highly 
specific small molecule inhibitors such as IIA4B20, 
IIA6B17, and mycmycin-1/2 have been developed. 
These inhibitors effectively target the IDRs of c-MYC, 
inhibiting its oncogenic activity and suppressing 
malignant cell transformation (134,135). 
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Table 2. Strategies targeting LLPS and representative drugs. 

Targeting strategy Representative drugs Drug targets Goal of drug targeting Reference 
Modification of 
condensates 

Olaparib PARP-1; members of the 
ADP-ribosyltransferase 
family 

Suppression of DNA repair by inhibiting FUS condensate enrichment in 
regions of DNA damage 

(140) 

  Chemical inhibitors of BET 
bromodomains (e.g., JQ1 
and IBET) 

BET protein BRD4 Inhibition of gene-specific transcriptional activation by releasing the Mediator 
complex from SEs. 

(158) 

Alteration of the 
drug partitioning 
process 

Cisplatin; mitoxantrone; 
tamoxifen 

SEs Modulation of the characteristics of condensates and influencing drug 
concentration and efficacy through targeted localization within SE 
condensates to enhance therapeutic effectiveness 

(95) 

Targeting of IDRs YK-4-279, a derivative of the 
lead compound 

Interaction between 
EWS-FLI1 and RNA helicase 
A 

Inhibiting the proliferation of Ewing sarcoma by induction of apoptosis in 
tumor cells 

(159) 

  Tin(IV) oxochloride-derived 
cluster 

IDR within the TAF2 subunit 
of TFIID 

Specifically, disrupts transcription initiation by selectively impairing the 
function of TFIID 

(136) 

  PRIMA-1; ReACp53 p53 mutants Induction of cell cycle arrest in cancer cells with mutant p53 by restoring the 
native conformation of aggregated mutant p53 proteins 

(160,161) 

  IIA4B20; IIA6B17 Transcription factor Myc Neutralization of the oncogenic effects of Myc by disrupting Myc/Max 
dimerization 

(135,162) 

  Elvitegravir, an anti-HIV 
drug 

SRC-1, a transcriptional 
coactivator for nuclear 
hormone receptors 

Suppression of YAP transcriptional activity in cancer cells through inhibition 
of phase separation of SRC-1 condensates 

(163) 

 PCG IDR of BRD4 Suppression of BRD4-dependent gene transcription (137) 
Dissolution of 
condensate 

Sodium arsenate; 
vinblastine 

Microtubules Disruption of SG formation via inhibition of SG protein transport along 
microtubules 

(164) 

  Allosteric inhibitors of SHP2 SHP2 mutants Suppression of the RAS-MAPK pathway via inhibition of LLPS of SHP2 
mutants 

(119,121) 

  4,4'-Dianilino-1,1'-binaphthy
l-5,5'-disulfonic acid 
(bis-ANS) 

LLPS of the TDP-43 LCD Modulation of dysregulated LLPS: high concentrations inhibit TDP-43 
condensate assembly, whereas low concentrations facilitate the formation of 
liquid droplets. 

(165) 

 C108 GTPase-activating protein 
(SH3 domain)-binding 
protein 2, G3BP2 

Interference with breast tumor progression via modulation of SART3 mRNA 
regulation. 

(166) 

 
 
The TFIID transcription complex is a critical 

component of the transcription initiation machinery 
in eukaryotes. Within this complex, the TAF2 subunit 
contains an IDR that plays a regulatory role in 
transcriptional activation. In an important discovery, 
a tin-based metal cluster was identified as a selective 
inhibitor that binds specifically to this IDR within the 
TAF2 subunit of TFIID. By targeting the IDR, the 
metal cluster acts as a selective inhibitor, modulating 
the activity of TFIID and subsequently impacting 
transcription initiation processes (136). 

Recently, a noteworthy compound called PCG, 
derived from a natural source, has emerged as a 
potential regulator of LLPS. PCG has been shown to 
effectively convert phase-separated BRD4 into stable 
aggregates both in vivo and in vitro by specifically 
targeting the IDR of BRD4 (137). This targeted action 
of PCG results in the suppression of BRD4-dependent 
gene transcription and thus opens a promising 
avenue for therapeutic intervention. 

Another approach to target IDRs is through 
peptide-based inhibitors. Peptides such as ReACp53 
and polyarginine analogs have shown promise in 
blocking amyloid formation by p53 mutants. These 
peptides directly interact with the IDRs of p53 
mutants, preventing their aggregation and restoring 
their tumor-suppressive function in cancer cells (138). 

5.2 Targeting the modification of condensates 
The regulation of LLPS dynamics is notably 

influenced by PTMs, modifications occurring after 
protein translation. Exploiting these PTMs as 
intervention targets holds considerable promise. The 
effectiveness of olaparib, a small molecule inhibitor of 
PARP1/2, has been demonstrated in terms of its 
ability to inhibit the formation of condensates 
involved in PARylation-related DNA repair and 
disrupt the DNA damage response. By inhibiting 
PARP activity, these inhibitors modulate the PTMs 
involved in condensate assembly, thereby impacting 
their functions and cellular outcomes (139,140). 
Furthermore, by inhibiting PARP1/2 activity, PARP 
inhibitors disrupt the PARylation process and alter 
the dynamics of LLPS. PARylation functions to 
generate a scaffold to facilitate the recruitment of 
proteins and nucleic acids to condensates, thereby 
promoting LLPS. Inhibition of PARP1/2 causes a 
reduction in the PAR level, affecting the assembly and 
stability of condensates formed through LLPS (141). 

Kinases involved in LLPS regulation are another 
intervention target. For example, DYRK3, a kinase 
involved in LLPS, can drive the dissolution of SGs to 
release mTORC1. By inhibiting DYRK3 activity with 
GSK-626616, the recondensation process can be 
promoted in cells. Thus, the disrupted SGs can 
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re-form, leading to sequestration of RNA and proteins 
within the recondensed granules. Additionally, 
DYRK3 inhibitors can effectively suppress mTORC1 
signaling by preventing the release of mTORC1 from 
dissolved SGs (142). 

Furthermore, the small molecule inhibitor JQ1 
has gained considerable attention for its ability to 
target LLPS. JQ1 acts primarily on BET proteins, 
particularly BRD4. By binding to the bromodomain of 
BRD4, JQ1 disrupts the interaction between BRD4 and 
acetylated lysine residues, thereby interfering with its 
recruitment to hyperacetylated promoter and 
enhancer regions (143). Moreover, BRD4 can physi-
cally associate with the Mediator complex, and the 
application of JQ1 can lead to rapid release of 
Mediator. This dissociation of Mediator from 
chromatin is strongly correlated with repressed 
transcription of nearby genes. Notably, these genes 
exhibit significant enrichment as targets of the MYB 
transcription factor, a key regulator of leukemo-
genesis, as well as for functions associated with the 
development and progression of leukemia (144). 

Targeting modifications of condensates is a 
valuable strategy to modulate their assembly, 
stability, and function. By specifically interfering with 
the PTMs involved in LLPS, these approaches can 
regulate condensate behavior and cellular outcomes. 
However, it is crucial to consider the specificity and 
selectivity of these inhibitors to minimize off-target 
effects and potential disruption of normal cellular 
processes. 

5.3 Targeting the drug partitioning process 
In traditional approaches, small molecule 

inhibitors disrupt LLPS by directly interacting with 
the components of condensates. However, an 
alternative strategy focuses on the process of drug 
partitioning into phase-separated condensates, which 
changes their physicochemical properties and 
functional outcomes. As Klein et al. reported, several 
antineoplastic compounds, such as cisplatin, 
mitoxantrone, tamoxifen, THZ1, and JQ1, can become 
highly concentrated into biomolecular condensates 
(e.g., MED1 condensates), which influences their 
therapeutic activity. This selective partitioning into 
SGs may occur even in the absence of a compound’s 
targets (95). This group further found that molecules 
with aromatic rings are more likely to accumulate 
within MED1 condensates, suggesting that the 
physicochemical properties of small molecules, such 
as pi-pi or pi-cation interactions, contribute to their 
selective partitioning into MED1 condensates (95). In 
addition, cisplatin treatment was found to induce 
gradual and specific disruption of MED1 condensates, 
thus clarifying the mechanisms through which 

platinum drugs effectively target tumor cells strongly 
dependent on SE-driven oncogene expression. 

5.4 Advantages of and challenges in targeting 
LLPS 

Targeting phase separation as a therapeutic 
strategy offers important advantages in the 
development of novel interventions (Table 2). By 
modulating the assembly and dynamics of 
biomolecular condensates, precise control over 
cellular processes can be achieved. This approach 
provides a unique opportunity to restore normal 
cellular functions and attenuate disease progression. 
Moreover, targeting phase separation offers a new 
approach to overcome challenges in traditional drug 
discovery. Conventional drug development often 
focuses on inhibition of specific protein targets with 
well-defined structures. However, many proteins lack 
well-defined structures and are challenging to target 
using traditional approaches. By targeting the process 
of phase separation itself, rather than specific protein 
structures, a broader range of potential therapeutic 
targets becomes accessible (145). 

However, targeting phase separation also 
presents challenges. Biomolecular condensates are 
complex and heterogeneous; thus, understanding 
their precise mechanisms and identifying specific 
targets requires comprehensive characterization 
techniques and advanced computational methods. 
Achieving selectivity while preserving normal 
condensates is another challenge, as modulating 
phase separation may impact essential cellular 
structures and functions. Robust experimental and 
computational approaches are crucial for target 
identification, validation, and optimization of drug 
candidates. 

6. Discussion 
LLPS has recently emerged as a novel 

biophysical paradigm, offering valuable insights into 
the spontaneous formation of membraneless 
organelles (146,147). The causal relationship between 
aberrant LLPS and cancer is a crucial issue that needs 
to be addressed to establish the importance of LLPS in 
oncogenesis. 

As mentioned earlier in this review, evidence has 
shown that the LLPS-competent IDR in NUP98- 
HOXA9 plays a pivotal role in leukemogenesis. The 
IDR facilitates the formation of puncta, which leads to 
enhanced chromatin occupancy of the chimeric 
transcription factor and promotes transcriptional 
activation (27). Other evidence for a causal role of 
LLPS is that LLPS of SHP2 can be targeted 
therapeutically using allosteric inhibitors, which 
attenuate LLPS of SHP2 mutants and enhance the 
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enzymatic activity of SHP2. This observation provides 
evidence that LLPS can regulate the activity of SHP2, 
suggesting its potential as a therapeutic target (121). A 
very recent study conducted by Song et al. further 
demonstrated that hotspot mutations in the 
structured Yaf9, ENL, AF9, Taf14, Sas5 (YEATS) 
domain of the chromatin reader eleven-nineteen- 
leukemia (ENL) played a pivotal role in the formation 
of aberrant transcriptional condensates associated 
with cancer (148). The condensates formed by ENL 
mutants at physiological levels are functionally 
associated with upregulation of oncogenes. Moreover, 
excessive expression of ENL mutants can result in the 
formation of dysfunctional condensates (148). 
Collectively, the results of these studies, among 
others, support the idea that aberrant LLPS plays a 
causal role in cancer. Through the utilization of 
mutants with impaired LLPS capacity, investigators 
have established a direct connection between 
dysregulated LLPS and the acquisition of oncogenic 
phenotypes (149). 

Understanding LLPS presents an opportunity to 
design drugs with new targeting strategies. One of the 
greatest advantages of LLPS is that it presents a novel 
approach to address the limitations encountered in 
traditional drug discovery. Conventional drug 
development revolves primarily around inhibiting 
specific protein targets with well-defined structures. 
However, proteins involved in LLPS, such as IDR 
proteins, often lack distinct structures, posing 
challenges for conventional targeting methods (145). 
By directing efforts toward the modulation of phase 
separation itself, rather than individual protein 
structures, a wider array of potential therapeutic 
targets can be explored, circumventing the limitations 
of traditional approaches. For example, the SRC1 
inhibitor elvitegravir disrupts the formation of SRC-1 
condensates in cancer cells, presenting a promising 
LLPS-based strategy for targeting the traditionally 
challenging SRC-1/YAP/TEAD complex and 
suppressing YAP-dependent cancer proliferation 
(110). This approach provides new possibilities for 
overcoming challenges in drug discovery and 
expanding the scope of therapeutic interventions. the 
future development of effective therapeutics requires 
a comprehensive understanding of the biophysical 
principles and regulatory mechanisms underlying 
LLPS. 

A key challenge in studying LLPS lies in the 
development of novel conceptual frameworks, 
cutting-edge tools, and sophisticated probes that can 
effectively modulate the physicochemical properties 
of specific condensates. Methods for studying LLPS 
have yielded important insights regarding the 
properties and dynamics of phase-separated 

condensates. Ensemble experiments, such as imaging 
and fluorescence techniques, allow the direct 
measurement of droplet properties over time and the 
systematic testing of various factors. Single-molecule 
techniques such as single-molecule Förster resonance 
energy transfer (smFRET) offer the ability to observe 
conformational changes and dynamic processes at the 
molecular level. Nuclear magnetic resonance (NMR) 
spectroscopy provides atomic-level structural and 
dynamic information. The development of novel 
techniques that can provide both high-resolution 
structural information and real-time dynamic proper-
ties of condensates is needed (150). These techniques 
could involve the integration of complementary 
methods, such as cryo-electron microscopy (151) and 
superresolution microscopy (152), to visualize 
condensate structures at high resolution. Addition-
ally, the combination of single-molecule techniques 
with NMR or other spectroscopic approaches could 
impart a more comprehensive understanding of 
condensate behavior (5). Furthermore, given the 
intricate complexity and regulatory mechanisms in 
the intracellular environment, the effectiveness and 
safety of anticancer agents that modulate LLPS must 
be evaluated in animal models. 

In conclusion, targeting phase separation offers 
promising opportunities for therapeutic interventions 
in various diseases, including cancer. This strategy 
provides a means to disrupt pathological condensates 
and restore normal cellular function. However, the 
complexity of LLPS, the dynamic nature of 
condensates and the need for specificity pose 
challenges that must be carefully addressed. Future 
research and innovative approaches are necessary to 
overcome these challenges and fully exploit the 
therapeutic opportunities associated with manipu-
lating LLPS for disease treatment. 
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