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Abstract 

Anthracyclines are a class of conventionally and routinely used first-line chemotherapy drugs for cancer 
treatment. In addition to the direct cytotoxic effects, increasing evidence indicates that the efficacy of the 
drugs also depends on immunomodulatory effects with unknown mechanisms. Galectin-9 (Gal-9), a 
member of the β-galactoside-binding protein family, has been demonstrated to induce T-cell death and 
promote immunosuppression in the tumor microenvironment. Here, we asked whether 
anthracycline-mediated immunomodulatory activity might be related to Gal-9. We found that combining 
doxorubicin with anti-Gal-9 therapy significantly inhibited tumor growth and prolonged overall survival in 
immune-competent syngeneic mouse models. Moreover, Gal-9 expression was increased in response to 
doxorubicin in various human and murine cancer cell lines. Mechanistically, doxorubicin induced tumoral 
Gal-9 by activating the STING/interferon β pathway. Clinically, Gal-9 and p-STING levels were elevated 
in the tumor tissues of breast cancer patients treated with anthracyclines. Our study demonstrates Gal-9 
upregulation in response to anthracyclines as a novel mechanism mediating immune escape and suggests 
targeting Gal-9 in combination with anthracyclines as a promising therapeutic strategy for cancer 
treatment. 
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Introduction 
Breast cancer is the most common cancer and the 

second leading cause of cancer-related death in 
women [1]. In the past twenty years of early 
diagnosis, neoadjuvant and adjuvant chemotherapy 
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with anthracycline has significantly reduced the 
mortality from breast cancer [2]. Anthracyclines, such 
as doxorubicin and epirubicin, are commonly used in 
clinical treatment [3]. The drug action of anthracycline 
targets tumor DNA through the topoisomerase II 
enzyme, inhibiting downstream protein expression 
and causing cell membrane dysfunction in cancer cells 
[4]. Although anthracycline has improved patient 
survival, the increase in chemoresistance poses a 
clinical challenge in treating breast cancer [5]. 

 Immunogenic cell death (ICD) is a form of cell 
death that elicits an immune response, contrary to 
"silenced" cell death, such as apoptosis. It is believed 
that tumor cells undergoing ICD express or release 
damage-associated molecular patterns (DAMPs) to 
activate or inhibit immune cells [6]. In addition, 
anthracyclines, including several chemotherapy 
drugs, have been shown to induce ICD [7]. Treatment 
of tumor cells with anthracycline-induced calreticulin 
(CRT) membrane translocation is essential for tumor 
cell phagocytosis by dendritic cells and the antitumor 
immune response [8]. Furthermore, anthracyclines 
stimulate the production of type I interferons (IFNs) 
by tumor cells through activation of the endosomal 
pattern recognition receptor (PRR) Toll-like receptor 3 
(TLR3), contributing to the efficacy of chemotherapy 
[9]. However, IFNs also upregulate the expression of 
multiple immune inhibitory programs, including the 
PD-1 ligands PD-L1 and PD-L2 [10] and the TIM-3 
ligand galectin-9 [11]. 

 Galectin-9 (Gal-9) is a member of the galectin 
family of lectins, and Gal-9 induces cell death in T 
helper cells and is dependent on Tim-3 through 
calcium aggregation [12]. In addition, a recent study 
demonstrated that Gal-9 induces tumor-associated 
macrophages and promotes immune suppression via 
interaction with Dectin 1 [13]. Moreover, Gal-9 has 
also been demonstrated to bind 4-1BB and promote 
4-1BB aggregation to induce functional activity in 
immune cells [14]. Hence, Gal-9 might have a broader 
role in immune regulation. Recently, inhibition of 
Gal-9 was a promising therapeutic target in treating 
various types of cancers. Therefore, blocking Gal-9 or 
inhibiting Gal-9 expression in the tumor microen-
vironment is important to improve immunotherapy 
for cancer patients [15]. 

 Recently, accumulating studies have indicated 
that conventional anticancer drugs affect the efficacy 
of immunotherapy [16]. Clarifying the crosstalk 
between chemotherapy drugs such as anthracycline- 
induced ICD and cancer immune checkpoint proteins 
can improve more efficient combinatorial therapy. 
Although the effects of anthracyclines have shown 
promising results in breast cancer, the detailed 
mechanism of anthracycline-induced Gal-9 

expression is still unknown. 
 Here, we show that anthracyclines such as 

doxorubicin and epirubicin induce Gal-9 expression 
through the STING/IFNβ axis and that combined 
therapy with anti-Gal-9 produced synergistic 
antitumor effects. These results suggested that Gal-9 
expression contributes to adaptive immune resistance 
that limits the immunogenicity of ICD and that, 
combined with anti-Gal-9, is a promising strategy for 
cancer treatment with immunogenic chemotherapy 
and radiotherapy that induce IFN-I expression in 
breast cancer. 

Materials and Methods 
Antibodies, chemicals, and cell lines 

 CT26 cells (mouse colon adenocarcinoma) were 
obtained from the National Cancer Institute and 
maintained at 37 °C and 5% CO2 in DMEM 
supplemented with 10% fetal bovine serum (FBS). All 
other cell lines were obtained from ATCC. The mouse 
mammary carcinoma cell line (EMT6) was maintained 
in RPMI-1640 supplemented with 10% FBS, and all 
other cell lines were maintained as recommended by 
ATCC. All cell lines were mycoplasma free. Unless 
specified otherwise, cells were treated with 
anthracyclines (Sigma) at a concentration of 1 μg/ml 
in media for 24 hours. Gal-9 antibody (clone OTI1G3) 
was purchased from Bio-Rad, and STING antibody 
(19851-1-AP) was purchased from Proteintech. The 
Gal-9 antibody for immunohistochemical staining 
(IHC) in mouse tissue was purchased from Bioss. 

Plasmids and transfection 
 CRISPR‒Cas9 knockout of Gal-9 in MB-231 cells, 

DNA oligos 5’-caccgGGCGATGGTAGTATTCAAAC- 
3’ and 5’-aaacGTTTGAATACTACCATCGCCc-3’ 
were annealed and cloned into BsmBI-digested 
pLentiCRISPR v2 (Addgene) under the control of the 
type 3 RNA polymerase III promoter U6. Lentiviruses 
were generated, and MB-231 cells were transduced 
and selected with puromycin, as described above. 
EMT6 and CT26 cells were transfected with a pGIPZ 
shRNA vector (control; Thermo Fisher Scientific, 
Rockford, IL, USA) or pGIPZ shRNA against STING 
to knockdown its expression. The STING shRNA 
sequences were as follows (5´ to 3´): shRNA1: 5´ 
AGAGGTCACCGCTCCAAATAT 3´ and shRNA2: 5´ 
TTGTCTCTAGCACTGGTAT 3´ (targeting the 3´- 
untranslated region). 

 For the generation of stable cancer cells using 
retroviral infection, recombinant retroviruses were 
produced by cotransfecting HEK 293T cells (Clontech) 
with the DVPR plasmid and VSV-G plasmids using 
Lipofectamine 3000 (Invitrogen). Supernatants 
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containing viruses were harvested 48 hours after 
transfection, centrifuged to eliminate cell debris, and 
filtered through 0.22 µm filters. Cancer cells at ~70% 
confluency were cultured in virus-containing medium 
for one day to infect cells. Stable clones of different 
constructs were selected and maintained in culture 
medium with 2 μg/ml puromycin. 

Real-time PCR (RT‒PCR) 
 Total RNA was isolated using TRIzol reagent 

(Invitrogen). First-strand cDNA was prepared using 
the PrimeScript 1st strand cDNA Synthesis Kit 
(Takara) according to the manufacturer’s protocol 
with 1 μg of total RNA. All RT-PCRs were performed 
in a 20-μl mixture containing 1 × SYBR Green Master 
Mix (Takara), 0.2 μmol/L of each primer, and 2 μl of 
cDNA template. We used the primers 5’-ACAG 
ACTTACAGGTTACCTCCGA-3’ and 5’-CATCTGC 
TGGTTGAATGCTT-3’ for human INFβ; 5’-GGAG 
CGAGATCCCTCCAAAAT-3’ and 5’-GGCTGTTGTC 
ATACTTCTCATGG-3’ for human glyceraldehyde 
3-phosphate dehydrogenase (GAPDH); 5’-CCACC 
ACAGCCTCTCCATCAAC-3’ and 5’-CAAGTGGAG 
AGCAGTTGAGGACA-3’ for mouse INFβ; and 
5’-CATCACTGCCACCCAGAAGACTG-3’ and 5’-AT 
GCCAGTGAGCTTCCCGTTCAG-3’ for mouse 
GAPDH. Real-time PCR was performed using the 
Applied Biosystem 7500 system under the following 
cycling conditions: 95 °C for 30 s, 40 cycles of 95 °C for 
5 s and 60 °C for 34 s, denaturation at 95 °C for 30 s, 
annealing by 40 cycles at 95 °C for 5 s, and extension 
at 60 °C for 34 s, followed by the melting curve stage. 
The relative INFβ expression level was normalized to 
that of GAPDH. 

Assay for Anthracycline-induced IFNβ 
secretion 

 Cells (1x106) were seeded in 6-well plates. After 
12 hours in culture, fresh medium with 1 µg/ml 
doxorubicin or epirubicin (Sigma) was added for 24 
hours. The conditioned medium was then harvested 
and measured for IFNβ using mouse IFNβ 
colorimetric ELISA kit (Thermo Scientific). 

Syngeneic mouse tumor models and 
treatments 

 Four-week-old female BALB/cJ and SCID mice 
were purchased from The Jackson Laboratory and 
were allowed to acclimate to the housing facility for at 
least two weeks before experiments. All animal 
experiments were performed following The 
University of Texas MD Anderson Cancer Center 
(MDACC) Institutional Animal Care and Use 
Committee (IACUC) guidelines (protocol number: 
#00001334-RN01) in an MDACC AAALAC-accredited 

barrier facility vivarium. 
Tumorigenicity assays were performed using 

mouse subcutaneous breast and liver cancer models. 
EMT6 and CT26 cancer cells (1×105) were 
subcutaneously injected into the right inguinal fold 
regions of mice. Mice were randomized into treatment 
groups 7–9 days later when tumors were palpable in 
most mice and treated with doxorubicin (4 mg/kg) or 
PBS. For antibody-based drug intervention, 100 μg of 
anti-mouse Gal-9 monoclonal antibody (mAb) 
(BioXCell) or rat IgG (control; BioXCell) was injected 
intraperitoneally every two days four times after 
doxorubicin injection. Subcutaneous tumors were 
measured using a caliper, and orthotopic tumors were 
evaluated using high-frequency ultrasound (Vevo 
2100 imaging system: FUJIFILM VisualSonics Inc., 
Toronto, Ontario, Canada). Tumor volumes were 
calculated using the formula (length × width2)/2. At 
the experimental endpoint, mice were killed using 
CO2 exposure followed by cervical dislocation, and 
tumors were excised for subsequent histological 
analysis or processed immediately for flow cytometric 
analyses. 

Flow cytometric analysis 
 To detect cell surface Gal-9 expression, the cells 

were resuspended in phosphate-buffered saline (PBS) 
and stained with APC anti-mouse Gal-9 antibody 
(BioLegend) as previously described using standard 
protocols for flow cytometry [17]. An isotype IgG 
antibody was used as a negative control. Stained cells 
were evaluated using a BD FACSCanto II cytometer, 
and data were analyzed using FlowJo software. To 
analyze cytotoxic T lymphocyte (CTL) profiles and 
Gal-9 levels in mouse tumor samples, a Mouse Tumor 
Dissociation Kit (Miltenyi Biotec) and gentleMACS 
Octo Dissociator (Miltenyi Biotec) were used to digest 
mouse tumors into single cells. After the removal of 
red blood cells and hybridization with CD16/CD32 
antibody (TruStain fcX, BioLegend), single cells were 
stained for flow cytometry according to standard 
protocols with antibodies against the following: 
PE-CD45 (BioLegend), PerCP-CD3 (BioLegend), 
APC/Cy7-CD8a (BioLegend), and APC–Gal-9 
(BioLegend). For further intracellular staining, cells 
were fixed, permeabilized, and stained with Pacific 
Blue granzyme B (BioLegend). Stained cells were 
analyzed using a BD FACSCanto II cytometer (BD 
Biosciences). Data were analyzed by using the FlowJo 
software program. 

Immunohistochemical staining of human 
breast samples 

To further validate our findings in human cancer 
patient samples, we analyzed the correlations 
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between p-STING levels and Gal-9 expression in 
human breast tumor specimens using IHC. Briefly, 
tissue samples were incubated with antibodies against 
Gal-9 (RD System) and p-STING (Cell Signaling) and 
then incubated with an avidin-biotin-peroxidase 
complex. Visualization was performed using 
3-amino-9-ethylcarbazole (AEC) chromogenic 
substrate. Fisher’s exact test and the Spearman rank 
correlation coefficient were used for statistical 
analysis, and P values less than 0.05 were considered 
statistically significant. For histological scoring, the 
staining intensity was ranked into 1 of 3 groups: high 
(score 3), medium (score 2), and low (score 1 and 0). 

Statistical analysis 
 Unless noted otherwise, graphing and statistical 

analyses were performed using Prism 8 (GraphPad). 
Unpaired two-tailed t tests were used to compare two 
groups, while ordinary one-way ANOVA followed by 
Tukey’s multiple comparison tests were used to 
compare multiple treatment groups. Spearman’s test 
was used to assess the correlation between continuous 
variables. The area under the curve was used to 
compare tumor growth kinetics between treatment 
groups. Log-rank (Mantel‒Cox) tests were used for 
the comparison of survival curves. NS, not significant 
(P > 0.05); *P < 0.05; **P < 0.01; ***P < 0.001. 

Results 
Anti-Gal-9 therapy in combination with 
doxorubicin improved antitumor activity 

 To investigate whether Gal-9 blockade could 
enhance the antitumor efficacy of anthracyclines in 
vivo, we treated mice bearing EMT6 tumors with 
doxorubicin, Gal-9 mAb, doxorubicin plus Gal-9 
mAb, or isotype control (Fig. 1A and Supplementary 
Fig. 1A). While doxorubicin or Gal-9 mAb alone 
showed a modest effect, their combined treatment 
demonstrated better efficacy in suppressing tumor 
growth and prolonging overall survival. (Fig. 1B, C 
and Supplementary Fig. 1B). Similar results were 
found in another syngeneic mouse model, CT26 colon 
cancer. In contrast, the combined treatment did not 
have an obvious effect on tumor growth in 
immune-deficient mice, suggesting that their efficacy 
relied on the competent immune system (Supple-
mentary Fig. 1C). To validate our findings, we 
analyzed Gal-9 expression by performing IHC and 
found that Gal-9 levels were increased in tumor tissue 
isolated from mice treated with doxorubicin. The 
expression of nuclear protein Ki67 (pKi67), a tumor 
cell proliferation marker, was decreased in the 
combined treatment compared with each treatment 
alone (Fig. 1D, E and Supplementary Fig. 1D, E). 

 To investigate the mechanisms underlying the 
efficacy of the combined treatment, we harvested the 
tumors and analyzed the alteration of tumor- 
infiltrating lymphocytes (TILs) by flow cytometry. 
The results showed that doxorubicin significantly 
induces Gal-9 expression in EMT6 tumors in vivo. We 
found that the number of granzyme B-positive 
intratumoral CD8+ T cells was significantly increased 
in the combination treatment group compared with 
doxorubicin or anti-Gal-9 treatment alone (Fig. 1F). 
These results suggested that doxorubicin treatment 
may induce Gal-9 expression and that the 
combination of doxorubicin and anti-Gal-9 antibody 
enhances antitumor immunity in syngeneic mouse 
models. 

Anthracyclines upregulate Gal-9 expression in 
tumor cells 

 To further investigate the effect of anthra-
cyclines on tumoral Gal-9 expression, we treated 
tumor cells with two anthracyclines, doxorubicin and 
epirubicin. The results showed that anthracycline 
treatment increased Gal-9 protein levels in all tested 
cell lines, including MDA-MB-231 and BT549 human 
breast cancer cells, PY8119 and EMT6 murine breast 
cancer cells, and B16-F10 murine melanoma cells (Fig. 
2A). Furthermore, we found that doxorubicin induced 
Gal-9 expression in a time- and dose-dependent 
manner, as shown in Fig. 2B. Gal-9 expressed on the 
cell surface of cancer cells exerts immunosuppressive 
effects by binding to TIM-3 on T cells [12]. Next, we 
examined whether the levels of cell surface Gal-9 were 
altered upon anthracycline treatment by flow 
cytometry analysis. As shown in Fig. 2C, 
anthracycline increased Gal-9 membrane levels in 
EMT6 and B16 murine cancer cells. Together, these 
results indicated that anthracyclines upregulate Gal-9 
expression in cancer cells. 

Doxorubicin induces Galectin-9 expression via 
STING upregulation 

 In a recent study, the Gal-9 receptor TIM-3 was 
thought to inhibit the cGAS-STING pathway [18]. 
Moreover, another study also showed that Gal-9 
could induce STING degradation via TRIM29- 
mediated ubiquitination [19]. Indeed, consistent with 
previous findings, phosphor-STING (p-STING) and 
STING levels were significantly increased by 
doxorubicin treatment in MD-MB-231 breast cancer 
cells (Fig. 3A). Furthermore, to identify the 
relationship between Gal-9 and STING in tumor cells 
upon doxorubicin treatment, we treated CT26 and B16 
mouse cancer cell lines with the STING activator 
miw815. The results showed that the expression of 
Gal-9 and phospho-STING were both increased by 
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treatment with doxorubicin and the STING activator 
miw815 (Fig. 3B). To test whether STING is involved 
in Gal-9 upregulation by doxorubicin, we treated the 
cells with H151, a STING inhibitor, and found that 
H151 significantly attenuated the increase in Gal-9 in 

response to doxorubicin (Fig. 3C). Furthermore, 
STING knockdown (KD) abrogated doxorubicin- 
induced Gal-9 in EMT6 and CT26 cells (Fig. 3D). 
Together, these results indicated that STING is 
required for doxorubicin-induced Gal-9 upregulation. 

 

 
Figure 1. Anti-Galectin-9 (αGal-9) therapy in combination with doxorubicin (Doxo) improves antitumor immunity and enhances cytotoxic T-cell activity. 
(a) The experimental design on a syngeneic mouse model of subcutaneous EMT6 and CT26 cancer cell lines. Mice were randomly allocated into treatment with doxo (4 mg/kg) 
or PBS for 7-9 days. After indicated treatment, 100 μg of αGal-9 antibody or rat IgG were injected intraperitoneally every two days four times. Values represented mean ± SD 
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of n=5 in each group. (b) Tumor volume was measured on the indicated different treatments and time points. (c) At indicated treatment, tumor volume and Kaplan–Meier survival 
curves were analyzed for mice bearing EMT6 or CT26 tumors. (d-e) Immunohistochemical staining of tumor sections revealed the expressions of Ki-67 (a proliferation marker) 
and Gal-9 under the indicated treatment in the tumor tissue. Scale bar, 50 µm. (f) The quantification of Gal-9+; CD3+; CD8+; granzymes b+ (GB+), and CD8+ plus CD3+ cell 
percentage in the tumor tissue from different groups of treatment.  

 

 
Figure 2. Anthracyclines enhance Galectin-9 (Gal-9) expression in cancer cell lines. (a) Western blot analysis for Gal-9 protein expression after treatment with 2 
μg/ml of doxorubicin (Dox) or epirubicin in different cell lines (MB231, BT549, PY8119, B16, and EMT6) (b) Gal-9 protein expression after treatment with Dox with the indicated 
times or different concentrations (times: 0, 4, 24, 48 and 72 hours; different concentrations: 0, 0.125, 0.25, 0.5, 1 or 2 μg/ml) in different cell lines (MB231, BT549, and EMT6). 
Gal-9 protein levels were analyzed by Western blotting. (c) The cell surface Gal-9 expression was analyzed by flow cytometry in EMT6 and B16 cells. APC, allophycocyanin.  
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Figure 3. Doxorubicin (Dox) induces Galectin-9 (Gal-9) expression through STING activation. (a) MB231 cells were treated with Dox at the indicated times (hour) 
and subjected to immunoblotting with the indicated antibodies. (b) CT26 and B16 cells were treated with miw815 (2 mg/ml) for 24 hours. (c) EMT6 cells were treated with 2 
μg/ml of doxorubicin and with or without 5 μM of STING inhibitor H151 for 24 hours. (d) EMT6 and CT26 parental or STING knockdown (KD) cells were treated with 2 μg/ml 
doxorubicin for 24 hours. The protein levels were analyzed by Western blotting.  

 

IFNβ mediates doxorubicin-induced Gal-9 
expression 

 STING is critical for inducing IFN expression in 
many different types of cells [20]. Moreover, we 
recently identified that IFNβ significantly influenced 
Gal-9 protein and mRNA expression [21]. Therefore, 
to determine whether IFNβ is involved in 
anthracycline-induced Gal-9 expression, we first 
investigated IFNβ expression by real-time PCR in 
murine tumor cell lines (B16, EMT6, CT26) upon 
doxorubicin or epirubicin treatment. Indeed, 
doxorubicin or epirubicin treatment significantly 
induced IFNβ mRNA expression (Fig. 4A). We also 
examined the secretion levels of IFNβ in the 
conditioned medium in response to anthracyclines by 
ELISA. Compared with the control group, the level of 
IFNβ was increased after doxorubicin or epirubicin 
treatment (Fig. 4B). To examine whether IFNβ is 
required for Gal-9 induction in response to 
anthracyclines, we pretreated the cells with IFN 
receptor (IFNR) antibody to block the IFN-mediated 
pathway and found that the IFNR antibody 

significantly inhibited doxorubicin-induced Gal-9 
protein expression (Fig. 4C). Together, these results 
suggested that the upregulation of Gal-9 expression 
by doxorubicin is dependent on IFNβ. 

Gal-9 levels are higher in the tumor tissues of 
chemotherapy-treated patients 

 Next, to evaluate the clinical relevance of our 
findings, we evaluated Gal-9 and p-STING levels by 
IHC in the tumor tissues of breast cancer patients 
before and after treatment with chemotherapy. 
Compared with the group before chemotherapy, 
higher levels of Gal-9 and p-STING were found in the 
patients posttreatment with anthracycline (Fig. 5A 
and 5B). Furthermore, Spearman’s test showed a 
positive correlation between p-STING levels and 
Gal-9 expression (Table 1). Our results demonstrated 
STING/IFNβ-induced Gal-9 as a novel mechanism 
mediating the immunomodulation of chemotherapy. 
They suggested the combination of anthracycline and 
Gal-9 mAb as a promising therapeutic strategy for 
treating breast cancer (Fig. 5C). 
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Table 1. Correlation between p-STING and Galectin-9 (Gal-9) in before or after chemotherapy surgical breast cancer specimens.  

 
 
 
 

 
Figure 4. Doxorubicin-induced Galectin-9 expression is highly correlated with IFNβ expression. (a) The target genes (IFNβ) expression in different cell lines (B16, 
EMT6, and CT26) treated with doxorubicin or epirubicin for 24 hours were measured by Real-time PCR, normalized to GAPDH. (b) ELISA assay for Dox or epirubicin-induced 
IFNβ secretion in different cell lines (B16, EMT6, and CT26) in a conditioned medium. (c) Representative image of western blot analysis of Gal-9 in EMT6 cells after treatment 
with indicated doses of Dox, interferon receptor (IFNR) antibody, and IFNβ.  



Int. J. Biol. Sci. 2023, Vol. 19 
 

 
https://www.ijbs.com 

4652 

 
Figure 5. Galectin-9 (Gal-9) and p-STING are upregulated in post-chemotherapy surgical breast cancer specimens. (a) The images of IHC staining of p-STING 
and Gal-9 in human breast cancer tissues (n=104). Scale bar, 50 μm. (b) Gal-9 and p-STING staining in paired pre- and post-treatment of anthracycline samples show increased 
expression in post-treatment samples (P = 0.01). (c) A proposed model illustrating the mechanism of anthracyclines-induced immunosuppression is mediated by STING/Gal-9 
axis in breast cancer. 

 

Discussion 
 In breast cancer, especially triple-negative breast 

cancer, chemotherapeutic agents such as 
anthracyclines are the most widely used and effective 
drugs. However, many patients are still resistant to 
anthracycline-based chemotherapy [22]. Thus, 
improving breast cancer treatment regimens is still an 
urgent need. Moreover, a clinical study indicated that 
the level of TILs is critical for the effectiveness of 
anthracyclines [23]. Therefore, enough activated TILs 

are essential to show the clinical benefit of 
anthracyclines in patients. In this study, we provided 
evidence that anthracyclines such as doxorubicin 
induce tumor Gal-9 expression via the STING-IFNβ 
axis. Gal-9 is known to inactivate CD8+ T cells. Thus, 
this pathway will limit the effectiveness of 
anthracyclines. Indeed, combining Gal-9 mAb with 
doxorubicin enhanced breast cancer treatment 
efficacy by improving CD8+ T-cell activity. In 
addition, we observed upregulated Gal-9 levels and 
p-STING levels in the tumor region after treatment 
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with anthracyclines in chemotherapy-treated breast 
cancer patients. In summary, our findings resolved a 
molecular mechanism of anthracycline-induced 
STING that increases Gal-9 expression in cancer cells 
to inactivate T cells and suppress the effectiveness of 
chemotherapy. We further demonstrated that 
anti-Gal-9 mAb plus anthracyclines could be an 
effective therapeutic combination strategy for treating 
breast cancer. Thus, combined chemotherapy and 
anti-Gal-9, as reported in this study, are clinically 
important and worthy of further testing in the clinic. 

 Doxorubicin has been one of the most effective 
anticancer drugs against solid tumors of diverse 
origins for many years [24]. The main mechanism of 
doxorubicin is insertion into DNA and inhibition of 
macromolecular biosynthesis [25]. In addition, recent 
studies have demonstrated that doxorubicin can 
contribute to reestablishing antitumor immunity 
through ICD regulation [26]. However, how ICD 
constructs an immunosuppressive cancer microen-
vironment is still largely unknown. ICD is a 
phenomenon that can change the composition of the 
cell surface and release cell soluble mediators such as 
ATP and high mobility group Box 1 (HMGB1), which 
are passively released by cancer cells undergoing ICD, 
triggering immune cell maturation [27]. However, 
cancer cells have also been shown to inhibit the 
expression of HMGB1, consequently decreasing 
immune infiltration in several cancers [28]. In 
addition, another study showed that cancer cell- 
secreted gelsolin (GSN) disrupts immunosurveillance 
by competitively blocking the interaction between 
extracellular F-actin and DNGR-1 on dendritic cells 
under ICD stimulation [29]. Moreover, we showed 
that doxorubicin induces Gal-9 expression and that 
blockade of Gal-9 by an antibody enhances antitumor 
immunity by activating T cells. These data suggested 
that targeting Gal-9 might be an attractive immuno-
therapy strategy for breast cancer. These results 
reflected the mechanisms by which malignant cells 
evade ICD-driven immunity and highlighted the 
critical relevance of these pathways for immuno-
surveillance in breast cancer. 

 The cyclic GMP-AMP synthase-stimulator of 
interferon genes (cGAS) and stimulator of interferon 
response cGAMP interactor (STING) pathways have 
been demonstrated to be key in detecting intracellular 
DNA. This pathway links DNA sensing with a robust 
innate immune defense program [30]. The mechanism 
is activated upon binding to double-stranded DNA 
(dsDNA) and activating STING as an adapter protein 
on the endoplasmic reticulum (ER) membrane. Upon 
triggering a signaling cascade, this pathway produces 
a series of immune and inflammatory mediators, 
which are important products in inflammatory and 

tumor biology [31]. Recent studies have demonstrated 
that several conditions in cancer cells contribute to 
activating the cGAS-STING pathway, such as 
chromosome mis-segregation during cell division or 
mitochondrial DNA leakage under the reactive 
oxygen species (ROS) response [32]. In addition, 
another study indicated that inhibition of the DNA 
repair-related gene ATM activates the cGAS/STING 
pathway by downregulating mitochondrial transcrip-
tion Factor A (TFAM) [33]. Our study discovered that 
doxorubicin induces STING expression in breast 
cancer cell lines. Clinically, we further showed that 
breast cancer patients, after treatment with 
chemotherapy, had significantly enhanced p-STING 
and Gal-9 expression in tumor tissues, which explains 
the regulation of ICD-induced tumor immuno-
suppression in the tumor microenvironment. In 
addition, previous studies have also shown that SHP2 
induces cGAS-STING activation by promoting DNA 
damage and leads to the promotion of IFN expression 
by STING, which in turn supports a positive feedback 
loop to enhance RNA and DNA expression, including 
inflammation, senescence, and autophagy [34]. 
Moreover, clinically, another report revealed that 
after neoadjuvant chemotherapy, the cGAS-STING- 
activated immune response could be a biomarker to 
predict the effect of chemotherapy [35]. Recent studies 
have also demonstrated that STING can be 
phosphorylated by upstream signaling, such as EGFR 
or other activators, to induce innate immunity in cells 
[36]. Furthermore, STING phosphorylation is 
important for inducing downstream IRF3 phospho-
rylation [37]. All these findings suggest that STING is 
a potential target for combination with anthracyclines 
to treat breast cancer. 

 Gal-9, an important family member, consists of 
two carbohydrate-recognition domains (CRDs) 
connected by a linker sequence [38]. This structure can 
help Gal-9 crosslink glycoproteins and then form 
multivalent galectin-glycoprotein lattices that 
regulate multiple biological functions and exert 
strong immunomodulatory effects, including 
mediating T-cell responses, cell adhesion, cell surface 
recognition, migration, and chemoattraction and 
acting as a modulator of important signals between 
growth and apoptosis [39]. In addition, other studies 
have demonstrated that Gal-9 plays an important role 
in antitumor immunity and is involved in tumor 
progression, including tumor cell adhesion, survival, 
immune escape, and angiogenesis [40]. However, 
Gal-9 has also previously been shown to bind 4-1BB to 
facilitate the functional activities of lymphocytes [14]. 
However, our recent study found that Gal-9 induces 
T-cell death by interacting with PD-1 and TIM-3 to 
induce apoptosis [21]. Moreover, another group also 
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demonstrated that Gal-9 exerts critical immune- 
suppressive effects specific to dectin 1 signaling [13]. 
These studies suggest that Gal-9 is a potential 
prognostic biomarker and a promising treatment 
target for certain malignancies. However, the 
potential mechanism of Gal‐9 involvement in breast 
cancer is still uncertain. IFN-γ or IL-1β can induce 
gal-9 expression in tissues such as endothelial cells, 
fibroblasts, and astrocytes [41]. Moreover, another 
study demonstrated that obesity induces Gal-9 
upregulation in B-acute lymphoblastic leukemia cells 
by the adipocyte secretome [21]. The current study 
revealed that IFNβ induces Gal-9 expression via 
STING activation in breast cancer cell lines. 
Interestingly, a recent study indicated that Gal-9 
promotes immunosuppression in the tumor 
microenvironment by inducing STING degradation 
[19]. This finding arouses our interest in STING-Gal-9 
as a potential negative feedback regulator that causes 
decreased TIL activity. 

 In summary, our data revealed that anthra-
cycline treatment induced tumor Gal-9 expression by 
inducing STING-mediated IFNβ. Furthermore, we 
also showed Gal-9 upregulation in the tumor tissues 
of breast cancer patients after anthracycline treatment. 
Preclinically, in our mouse model, inhibition of tumor 
Gal-9 by mAB treatment subsequently activates CTL 
activity, which promotes antitumor immunity. 
Moreover, combination treatment with anthracyclines 
and Gal-9 mAB significantly reduced tumor burden 
and OS in breast cancer immune-competent mouse 
models. This study provides a scientific basis to 
develop a novel effective combination therapy for 
breast cancer. 
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