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Abstract 

Since its first application in 2016, spatial transcriptomics has become a rapidly evolving technology in 
recent years. Spatial transcriptomics enables transcriptomic data to be acquired from intact tissue 
sections and provides spatial distribution information and remedies the disadvantage of single-cell RNA 
sequencing (scRNA-seq), whose data lack spatially resolved information. Presently, spatial 
transcriptomics has been widely applied to various tissue types, especially for the study of tumor 
heterogeneity. In this review, we provide a summary of the research progress in utilizing spatial 
transcriptomics to investigate tumor heterogeneity and the microenvironment with a focus on solid 
tumors. We summarize the research breakthroughs in various fields and perspectives due to the 
application of spatial transcriptomics, including cell clustering and interaction, cellular metabolism, gene 
expression, immune cell programs and combination with other techniques. As a combination of multiple 
transcriptomics, single-cell multiomics shows its superiority and validity in single-cell analysis. We also 
discuss the application prospect of single-cell multiomics, and we believe that with the progress of data 
integration from various transcriptomics, a multilayered subcellular landscape will be revealed. 
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1. Introduction 
Spatial and temporal dynamics are closely 

related to all the properties of a cell life cycle, 
including cytogenesis, differentiation, function, and 
death [1]. To explore the spatial and temporal features 
of cells, spatiotemporal transcriptomics was created, 
which includes spatial transcriptomics and temporal 
transcriptomics. Spatiotemporal transcriptomics 
provides a platform for researchers to analyze the 
genome and transcriptome at a subcellular atlas and 
comprehend the relative position of cells in tissue and 
the interaction with neighbors that could explain the 

function of cells. 
The popularization of single-cell RNA 

sequencing (scRNA-seq) [2] ushered in the era of 
single-cell analysis and enabled researchers to explore 
the identities of diverse cell types in complex tissue at 
the single-cell level. ScRNA-seq is based on 
high-throughput sequencing, also known as 
next-generation sequencing (NGS), which is used for 
detecting the single-cell transcriptome and providing 
high-resolution views of intercellular heterogeneity, 
revealing the precise location of transcription 

 
Ivyspring  

International Publisher 



Int. J. Biol. Sci. 2023, Vol. 19 
 

 
https://www.ijbs.com 

4779 

boundaries with a single-base resolution [2], and it 
can provide the differentiation trajectory of cells. 

In the workflow of scRNA-seq, the preparation 
of a single-cell suspension is indispensable for 
sequencing; however, this results in the loss of spatial 
information for the cells within the tissue. The spatial 
distribution of distinct cell types is a key factor in 
helping researchers comprehend the biological func-
tion and pathological changes of tissue. Especially in 
the study of tumor pathology, a spatially resolved cell 
atlas reveals a distinct border of tumor-infiltrated 
areas and stroma, cellular interaction between tumor 
and normal cells and a molecular-morphological map 
of the tumor. 

To correlate cell type information with their 
spatial location within the tissue, a new technique 
termed spatial transcriptomics (ST) was first 
developed in 2016 by Ståhl et al., which implements 
the visualization and quantitative analysis of intact 
tissue with spatially resolved transcriptome data [3]. 
The original ST approaches do not provide single-cell 
level resolution [4]. Since then, the combination of 
scRNA-seq and ST [5-7], which both retain spatial 
distribution and single-cell resolution, has become the 
cornerstone of cellular heterogeneity studies in 
complex tissues. 

This article reviews the recent advances in solid 
tumor tissue analysis by ST and summarizes the 
utilization of ST from different perspectives, 
including cell clustering and interaction, cellular 
metabolism, gene expression, immune cell programs 
and combination with other techniques. In recent 
years, single-cell multimodal omics have been 
developed rapidly, which is another major step 
toward comprehension of the inner workings, 
network connectivity and operational principles of 
cells; hence, we consider the future of ST as a crucial 
part of single-cell multimodal omics analysis. 

2. Origin of spatial transcriptomics and 
insights 
2.1 History of spatial transcriptomics 

Before the phrase “spatial transcriptomics” was 
coined, multiple technologies were designed to 
explore mRNA expression in tissue sections with 
spatially resolved data. Since the 1970s, in situ 
hybridization (ISH) has been conducted to visualize 
gene expression while retaining spatial distribution, 
including radioactive ISH (1969), fluorescent in situ 
hybridization (FISH) (1977), and whole-mount ISH 
(WM ISH) (1989). These techniques analyze gene 
expression on a single gene basis, while researchers 
anticipated a technique accomplishing the exploration 
of more genes or even whole transcriptomes, which 

eventually facilitated the emergence of ST [8]. 
The foundation of some ST technologies can be 

traced back to IR and UV laser capture microdissec-
tion (LCM) (1996) [9], which soon after was combined 
with microarray technology (1995) in 1999 [10]. 
Basically, present-era ST techniques are divided into 
five subcategories: LCM, single molecular FISH 
(smFISH), in situ sequencing (ISS), in situ array 
capturing (Array) and in silico reconstruction of 
spatial data [11], whose representative methods are 
GeoMX Digital Spatial Profiler (DSP), multiplexed 
error-robust FISH (MERFISH), Fluorescent In Situ 
Sequencing (FISSEQ), 10x Genomics Visum and 
microfluidic Deterministic Barcoding in Tissue for 
spatial omics sequencing (DBiT-seq). 

Currently, ST has already been used on various 
human tissues, especially in solid tumors, and the 
combination of scRNA-seq and ST, which both retain 
the spatial distribution and single-cell resolution, has 
become the cornerstone in tissue section analysis. 
Strictly, the single-cell resolution requires spatial 
chips with subcellular resolution; otherwise, present 
low-resolution ST can only use single-cell data for 
deconvolution conjecture. In particular, GeoMX DSP, 
which is based on the laser region of interest (laser 
ROI), can reach a subcellular resolution. With the 
combination of scRNA-seq, GeoMX DSP was 
performed on COVID-19 tissues and provided critical 
insights into the pathogenesis of severe COVID-19 
[12]. 

2.2 Commonly applied ST technologies 
 Since the initial proposal in 2016, diverse spatial 

transcriptomics techniques utilizing distinct strategies 
have gained rapid and widespread adopted. Each of 
these methods possesses unique features, accomp-
anied by their respective strengths and limitations. In 
this section, we expound upon the fundamental 
principles of the two most commonly utilized 
commercialized ST technologies: the 10x Genomics 
Visium and GeoMX DSP platforms. 

2.2.1 10x Genomics Visium 
10x Genomics Visium epitomizes a cutting-edge 

platform that leverages comprehensive measurement 
of mRNA in tissue sections while concurrently 
capturing the spatial resolved data for precise 
positioning.  

The Visium Spatial Gene Expression Slide is 
consisted with four 6.5 x 6.5 mm capturing area, 
which contains approximately 5000 spots with 
millions of capture probes in each spot [13]. Following 
tissue section permeabilization, cellular mRNA is 
made accessible and transformed into complementary 
DNA (cDNA) with spatial barcodes through reverse 
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transcription [13]. The incorporation of spatial 
barcodes allows for the precise identification of each 
mRNA transcript's location within the tissue section. 
By constructing a spatial gene expression library and 
performing RNA sequencing, researchers are able to 
analyze mRNA expression profiles within intact 
tissue sections while also visualizing them.  

The compatible tissue type of 10x Genomics 
Visium includes formalin-fixed, paraffin-embedded 
(FFPE) tissue and fresh frozen tissue samples. While 
the 10x Genomics Visium platform boasts an 
impressive resolution of 1-10 cells on average with a 
diameter of 55µm per spot, it falls short of achieving 
single-cell level resolution, which is the main 
drawback of this technique. 10x Genomics Visium is 
considered a highly advanced ST technology that 
enables researchers to comprehensively analyze the 
whole transcriptome with a panoramic view of the 
section. 

2.2.2 GeoMX DSP 
GeoMX DSP quantified mRNA transcripts and 

protein expression using indexing oligonucleotides 
that are attached to mRNA capture probes or 
antibodies [14]. After incubating the sample with 
oligonucleotide tags and visualizing it using 
fluorescent markers, the researchers were able to 
identify the Regions of Interest (ROI) - specific areas 
for analyzing the mRNA or protein pattern. The 
GeoMX DSP platform utilizes a design incorporating 
the indexing oligonucleotides with a UV-photo-
cleavable linker [14]. When the ROI is exposed to UV 
light, the DSP barcodes are released, subsequently 
detected and sequenced. Similar to 10x Genomics 
Visium, the GeoMX DSP platform is compatible with 
both FFPE tissue and fresh frozen tissue samples. 

The integration of multi-omics has long posed a 
challenging issue, however, the GeoMX DSP platform 
enables the combination of ST and spatial proteomics 
through simultaneous sequencing of transcriptome 
and proteome. With a spatial resolution that extends 
up to a depth of 10 µm [15], the GeoMX DSP 
theoretically achieved single-cell accuracy. Unlike 10x 
Genomics Visium, which provides a comprehensive 
view of the entire tissue section, the selection of ROI 
in this solution allows researchers to explore specific 
foci of interest within the tissue. 

2.3 Insights from spatial transcriptomics 
Currently, ST is applied in various fields, 

including development, neuroscience, pathology, 
tumorigenesis, etc., and has already led to successful 
outcomes in the analysis of spatial distributions of 
distinct cell types, and in particular, ST has been 
extensively performed in the analysis of solid tumor 

tissues. Considering this, in this section, we 
summarize the insight that ST brings to the study of 
solid tumors, including cell clustering and interaction, 
cellular metabolism, gene expression, immune cell 
programs and combination with other techniques 
(Figure 1). Besides, we have summarized ten 
significant findings of spatial transcriptomics in 
cancer research (Figure 2). 

2.3.1 Cell clustering and interaction 
In the workflow of ST, cell clustering and 

analysis of cellular interactions are indispensable, 
which leads to significant outcomes in the analysis of 
tissue sections. With the data of cell clustering and the 
projection of the results on tissue images, ST provides 
an understanding of cell enrichment with the spatial 
distribution and can define new subsets of cells. For 
instance, Ji et al. defined a new subset of tumor- 
specific keratinocyte populations related to human 
squamous cell carcinoma by the specific expression 
pattern of epithelial-mesenchymal transition markers 
[7], and it was applied to distinguish the border of 
tumor infiltration and stromal-immune niches [16]. 

Andersson et al. showed that with the assistance 
of expression-based clustering, the definition of cell 
types and heterogeneity of tumors could be analyzed, 
and they found immune cells involved and the 
relative genes overexpressed i.e., macrophages 
(APOE etc.); lymphocytes (HLA class I and II); cancer 
cells (ErbB2; EPCAM and CDH1) [5]. Moreover, ST 
provides insights into the colocalization of cells that 
allows analysis of cell-cell interactions, including 
inflammatory fibroblasts colocalized with stress- 
response genes expressed in cancer cells and 
colocalization of stromal, immune and cancerous cells 
in TME recurring tumor-stroma interactions [17-19]. 

2.3.2 Cellular metabolism 
ST is also widely performed to determine the key 

aspects in the processes of cellular metabolism for 
different spatial foci of tumors showing distinct 
metabolic patterns, and metabolic reprogramming is a 
common phenomenon in solid tumors. Combined 
with scRNA-seq, ST has shown superiority in the 
study of cellular metabolism by analyzing the 
expression of key transcripts in metabolism-related 
gene pathways. In solid tumor tissues, phenotypic 
and functional shifts in macrophages are related to 
metabolic regulation in response to changes in the 
microenvironment [6]. Metabolism in the TME is also 
strongly associated with tumor formation; for 
instance, myeloid cells metabolizing arginine and 
CD4(+) T cells in neuroblastoma together create a 
favorable microenvironment for tumorigenesis [20]. 
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Figure 1. Inspirations in spatial transcriptomics. TME: tumor microenvironment; ScRNA-seq: single cell RNA sequencing. 

 
With spatially resolved tissue data, the metabolic 

affinities of various cell subsets in the TME can be 
distinguished. In a cell subset termed invasive 
micropapillary carcinoma (IMPC) of breast cancer, 
higher lipid metabolism is found in all IMPC clusters 
and metabolic disturbance IMPC subpopulations 
located in different spatial areas [21]. Wang et al. 
modeled the network of metabolism in prostate 
cancer and discovered that prostaglandin metabolism 
genes were expressed at higher levels in tumor tissue 
than in adjacent tissue, and they demonstrated the 
unique liabilities of metabolism in the TME [22]. 

2.3.3 Gene expression 
Another crucial application of ST is the 

quantitative analysis of gene expression with the 
knowledge of spatial distribution in intact tissue. 
Before the large-scale application of ST, researchers 
could hardly describe the consistent, gene expression 
patterns and cellular interactions in different regions 

of the TME, which impeded the comprehension of 
tumor heterogeneity. Moreover, the alteration of gene 
expression is a significant aspect in tumor 
progression; without ST, the analysis of transcrip-
tomic changes is limited to single cell types rather 
than the overall analysis of distinct spatial regions of 
the TME. In studies of solid tumors, the heterogeneity 
of the TME shows strategic significance in tumori-
genesis, progression, metastasis and the selection of 
therapy for tumor treatment. 

With the advantage of retaining spatially 
resolved data at the single-cell level with scRNA-seq 
integration, ST provides a platform for researchers to 
explore the differential genes among various 
constituents, the traits of gene expression with spatial 
distribution in the TME [23], key transcriptomic 
changes and copy number variation (CNV) events 
[24] and the biomarkers associated with prognosis in 
the TME with spatial coordinates [25]. 
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Figure 2. Ten significant findings of spatial transcriptomics in cancer research. The timeline showed the publication dates of relevant studies, the technologies, the 
journals and the key findings [3, 7, 16, 17, 32, 34, 46, 59-61]. Nat Biotechnol: Nature Biotechnology; GeoMx DSP: GeoMX Digital Spatial Profiler; TLS: tertiary lymphoid 
structures; TCF: T-cell factor; ScRNA-seq: single cell RNA sequencing; CD8: cluster of differentiation 8; Nat Genet: Nature Genetics. 



Int. J. Biol. Sci. 2023, Vol. 19 
 

 
https://www.ijbs.com 

4783 

In colorectal cancer, Wang et al. uncovered 
increased PD-L1 expression at the transcriptional and 
translational levels in patients receiving immuno-
therapy compared with chemotherapy, which was 
considered feasible for the exploration of prognostic 
markers with spatially resolved data in the TME [25]. 
With the clarification of the tumor-infiltrated area, ST 
showed superiority in delineating the extent of cancer 
foci more accurately [26]. 

The spatial distribution resolved data also 
provides insights into the visualization of inflam-
matory reactions [5] and the analysis of prolonged 
interferon signaling activation [24] (with scRNA-seq 
integration). Moreover, the application of ST in solid 
tumors reveals the whole process of tumor 
development, for instance, fetal-like reprogramming 
and signaling pathways related to maintaining an 
onco-fetal ecosystem in tumorigenesis, the emergence 
of stress-like subsets since the preliminary phases of 
oncogenesis express a set of genes and show 
properties of drug resistance [27], epithelial- 
mesenchymal transition and angiogenesis [7, 28] 
polyclonal origins of metastasis [29] and transcripts 
correlated with metastasis [30, 31]. 

2.3.4 Immune cell programs 
Immune dysregulation in the TME plays a 

significant role in tumor growth, metastasis and 
immunosuppression. To ameliorate immune 
disorders and reverse immune suppression in the 
TME, researchers must understand the mechanisms of 
immunoregulation in tumor-infiltrated and normal 
areas as well as the spatial distribution of immune 
cells organized in tumors. Through its integration 
with scRNA-seq data, ST has been used for spatially 
mapping tertiary lymphoid-like structures, and 
revealing the specific interferon response in a 
particular region in a section, that type I interferon 
was associated with the coupling between particular 
T cell and macrophage states and B and T cells were 
co-localized in some patients [5]. Furthermore, the 
composition and organization of the TME, including 
the presence of tertiary lymphoid-like structures, are 
additional factors that can serve as predictors of the 
clinical outcomes of immunotherapy [32]. The leading 
edge of the immune reaction and the stromal-immune 
niches are marked with spatially resolved data from 
ST, which provide insights into immune regulation in 
antitumor therapies [16].  

Immunosuppression is acknowledged as the 
mediator of escape from immune system activation, 
and to comprehend the spatial reprogramming of 
immunosuppressive cells in the TME, ST is necessary. 
Combined with scRNA-seq, multiple cell types 
participating in immunosuppression were observed 

in squamous cell carcinoma, including coinhibitory 
signals on DCs and exhausted T cells and recruitment 
of regulatory T cells (Tregs) [7]. 

2.3.5 Combination with other techniques 
With the rapid development of genomics, 

transcriptomics, proteomics tools, etc., the application 
of multiomics has already become the trend in tumor 
tissue analysis. ST, which enables researchers to 
perform quantitative analysis and retains the spatial 
distribution of tissue sections, is a crucial part of the 
exploration of spatial heterogeneity in the TME. In 
addition, since ST was first reported, the combination 
of ST and scRNA-seq has been the most popular 
technique in normal and tumor tissue sequencing. 

While ST technology continues to evolve, 
another accelerated developing technique is spatial 
proteomics, and researchers are engaged in the 
combined application of ST and spatial proteomics, 
for the levels of RNA transcription in ST cannot 
directly reflex the levels of protein expression and 
spatial proteomics supplements this deficiency. 
Presently, Multiplexed Ion Beam Imaging 
Time-of-flight Mass Spectrometry (MIBI-TOF) which 
is based on metal labeled antibodies imaged by 
orthogonal time-of-flight mass spectrometry [33] was 
incorporated with ST and scRNA-seq in human 
squamous cell carcinoma to image the expression of 
and protein markers in the tumor, stroma and 
immune cells, and analyze the immunodepression 
pattern detected in ST and scRNA-seq [7]. Moreover, 
GeoMx DSP, based on identifying the releasing of 
oligonucleotide tags, enables simultaneous analysis of 
both RNA transcriptome and protein expression in a 
single tissue section [14]. This innovative technology 
has already been extensively utilized in various types 
of tumors.  

Spatial metabolomics, along with ST and spatial 
proteomics, plays a critical role in enabling spatially 
resolved multi-omics analysis. By integrating spatially 
resolved multi-omics, Ravi VM et al. spatially 
visualize the expression pattern of genes by ST and 
spatial proteomics and uncovered the mechanisms of 
dynamic adaptation of glioblastoma with the 
application of spatial metabolomics for metabolic 
factors is crucial in the dynamic adaptation of 
glioblastoma [34]. 

Spurred by advances in computer hardware and 
software, computers are currently widely used in 
various disciplines, particularly the combination of 
mathematics and computer science, which was 
developed to solve the challenge of building statistical 
models from massive datasets and termed machine 
learning [35]. A deep learning algorithm combining 
pathological sections and spatial transcriptomics 
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provides insights into the accurate prediction of 
spatially variable genes and the capture of 
high-resolution gene expression heterogeneity [36]. 
Applying convolutional neural networks (CNN) for 
spatial heterogeneity in gene expression of tissue 
analysis, a deep-learning algorithm was developed by 
He et al. on a new ST dataset in 68 tissue sections from 
23 breast cancer patients to predict genes with the 
highest mean expression and the spatial variable 
genes, and the test showed its accuracy, which was 
named ST-Net and combined histology examination 
with ST [36]. Additionally, it has been used for the 
recognition of tumor-infiltrated regions in entire 
tissue sections automatically, by which clinical 
decisions could be furnished to pathologists in the 
future [37]. 

3. Advances in spatial transcriptomics in 
solid tumors 

The tumor microenvironment (TME), the 
embodiment of heterogeneity, is closely related to 
tumorigenesis, progression and metastasis. Once we 
attribute tumorigenesis to mutationally corrupted 
cancer cells, studies have already proven that TME 
also plays a crucial role in tumorigenesis. Moreover, 
heterogeneity, which plays a critical role in drug 
resistance, has become a tremendous challenge in 
antitumor treatments. To analyze the TME and tumor 
heterogeneity, ST has emerged as a powerful tool to 
obtain the biological properties of different cell types 
and cell interactions with spatially resolved 
information [25]. With the development of ST, it has 
been used in multiple types of solid tumor tissue, 
including lung cancer, breast cancer, gastrointestinal 
cancer, and prostate cancer (Table 1). 

3.1 Lung cancer 
Lung cancer has already become the leading 

cause of mortality in both sexes worldwide. Presently, 
multiple therapies for lung cancer, including surgery, 
radiotherapy, chemotherapy, immunotherapy, etc., 
and the emergence of immunotherapy, especially 
PD-1/PD-L1 blockade, have shown superiority. 
However, the effect of immunotherapy varies in 
different patients, and ST provides insight into tumor 
heterogeneity with spatially resolved datasets, which 
may explain and predict the prognosis of various 
patients after immunotherapy. 

 Jon et al. conducted research on non-small cell 
lung cancer (NSCLC) patients to investigate the 
biomarkers linked to advantageous PD-1 checkpoint 
blockage using the GeoMx DSP, and they showed the 
potential of DSP in identifying spatially informative 
biomarkers of the PD-1 checkpoint blockade response 
in NSCLC and confirmed alternative immune 

predictors with spatial context deserving larger 
independent cohorts’ validation [38]. By applying ST 
to detect the composition of the TME, they revealed 
how distinct components of the TME determine the 
outcome of PD-1 checkpoint blockade. 

Moreover, Larroquette et al. performed ST on 16 
NSCLC tumors using DSP to determine NSCLC cells 
with different expression levels of CD163+ and to 
explore the determining factors that affect the effect of 
immune checkpoint blockers in tumors with 
increasing CD163+ expression, and they found that 
tumors with high CD163+ cell infiltration showed 
upregulation of ITGAM, CD27, and CCL5 [39]. 
Improved outcomes of immunotherapy were revealed 
to be related to the increased expression of genes 
including the M1 phenotype and interferon-γ 
signaling pathway in high macrophage infiltration 
tumors, and they found upregulation of CSF1R in 
responders [39]. 

3.2 Breast cancer 
Breast cancer is a heterogeneous disease that 

develops due to a combination of genetic and 
environmental factors [40]. The complex architecture 
and the specific spatial distribution of assorted cell 
types are intimately linked to tumor progression and 
response to therapy. Understanding tumor hetero-
geneity plays a critical role in clarifying prognoses 
and providing implications for chemotherapies for 
breast cancer. 

Lv et al. drew transcriptomic maps of invasive 
micropapillary carcinoma and revealed its extensive 
heterogeneity and discovered that the stromal areas 
displayed different gene expression patterns with the 
ST platform of 10x Genomics Visium (Visium) [21]. 
Furthermore, the curative effect of chemotherapeutic 
drugs is pertinent to the spatial distribution of 
pharmacogenes. Powell et al. applied Visium spatial 
transcriptomics to breast tumor tissue and revealed 
that the heterogeneity of pharmacogene expression 
may have significant implications for cancer 
treatment because of the influence on drug 
distribution and efficacy [41]. 

ST incorporating various transcriptomics, 
especially scRNA-seq, single-nucleus RNA sequen-
cing (snRNA-seq) and proteomics, may provide 
researchers with a broader range of ST applications. 
Andersson et al. used spatial transcriptomics (Visium) 
and integrated single-cell data to investigate gene 
expression patterns with spatially resolved data in 
HER-2-positive breast tumors and found a tertiary 
lymphoid-like structure and the colocalization of the 
type I interferon response with macrophages and T 
cells [5]. He et al. combined spatial transcriptomics 
(Visium) with histology images and identified 
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spatially resolved gene expression data of 102 genes 
and the simultaneous presence of immune activation 

and tumor development [36]. 

 

 
Figure 3. Typical cases of spatial transcriptomics applied in tumors. Nat Biomed Eng: Nature Biomedical Engineering; Nat Commun: Nature Communications; Nat 
Biotechnol: Nature Biotechnology; Cancer Biol Med: Cancer Biology & Medicine; Sci Rep: Scientific Reports; Clin Cancer Res: Clinical Cancer Research; Mol Syst Biol: Molecular 
Systems Biology; Cancer Discov: Cancer Discovery; Front Bioeng Biotechnol: Frontiers in Bioengineering and Biotechnology; CDH12: cadherin 12, type 2; CD8: cluster of 
differentiation 8; TME: tumor microenvironment; PD-1: programmed cell death protein 1; NSCLC: non-small cell lung cancer. 
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Table 1. Spatial transcriptomics in solid tumors 

Author Year Journal Type Platform Findings Refs 
K. H. Gouin 2021 Nat Commun bladder cancer Visium The CDH12 population showed undifferentiated and aggressive [52] 
Liu SQ 2022 J Hematol Oncol breast cancer Visium Malignant cells with diverse features, origins and functions clustered into distinct 

subpopulations owned specific spatial distribution and found variable enrichment 
of stromal cell subtypes 

[61] 

Powell NR 2022 Cancer Rep 
(Hoboken) 

breast cancer Visium The heterogeneity of pharmacogenes expression may have significant connotations 
for cancer treatment because of the influence on drug distribution and efficacy 

[41] 

S. Alon 2021 Science breast cancer ExSeq Differences in gene expression by cell types are plotted as a function of their 
distance from other cell types 

[62] 

A. Andersson 2021 Nat Commun breast cancer Visium Found tertiary lymphoid-like structures, and colocalization of T-cell and 
macrophage subpopulation with type I interferon response 

[5] 

A. Boisson 2021 Front Mol Biosci breast cancer Visium The tertiary lymphoid structure signature showed THF (two of the four annotated) 
and Th1 (all) expression 

[63] 

B. He 2020 Nat Biomed Eng breast cancer Visium Identified spatially resolved gene expression data of 102 genes and the 
colocalization of tumor progression and activation of immune reaction 

[36] 

R. Huang 2020 Front Oncol breast cancer Visium MAF positively regulated CD248 in the network of bone metastasis-specific [30] 
P. Lu 2021 Breast Cancer Res breast cancer Smart-3SEQ Key transcriptomic diversity and copy number variations events preceding HER2 

amplification in ductal carcinoma in situ 
[24] 

J. Lv 2021 Cell Death Dis breast cancer Visium Drew the transcriptomic maps of IMPC and revealed its extensive heterogeneity, 
and found varieties programs of gene expression in stroma 

[21] 

S. Nagasawa 2021 Commun Biol breast cancer Visium GATA3 irregulating promoted the transition of epithelial-to-mesenchymal and 
upregulated angiogenesis 

[28] 

A. Kulasinghe 2021 Front Oncol breast cancer DSP Adjuvant chemotherapy response is related to the upregulation of ER-alpha and 
downregulation of CD137 and MART1 in the stroma 

[64] 

J. Svedlund 2019 EBioMedicine breast cancer ISS Revealed intratumoral heterogeneity and uncovered areas of minor cellular 
subpopulations 

[65] 

S. Vickovic 2019 Nat Methods breast cancer HDST High-resolution spatial transcriptomics developed to capture RNA on dense arrays 
of spatially barcoded beads from tissue sections 

[66] 

L. Voith von 
Voithenberg 

2021 Small breast cancer DSP Polyclonal origin of metastasis and development are driven by multiple positional 
specificities 

[29] 

Y. Wang 2021 Cancer Res breast cancer DSP Expression morphology is an effective way to anticipate the mean expression of the 
tumor with spatial distribution from histology images 

[67] 

S. Z. Wu 2021 Nat Genet breast cancer Visium High-resolution immune profiles provided by immunophenotyping, including a 
clinical associated new subpopulation of PD-L1/PD-L2(+) macrophage 

[16] 

N. Yoosuf 2020 Breast Cancer Res breast cancer ST Trained a machine learning method on ST signatures and proved to be applicable to 
the identification of breast cancer regions 

[37] 

V. Kumar 2021 Cancer Discov. gastrointestinal 
cancer 

DSP Showed molecular resources of lineage status within and between patients with 
different gastric cancer subtypes with high-resolution 

[46] 

R. Sundar 2021 Gut gastrointestinal 
cancer 

DSP Regional lymph node metastases were related to deeper regions of originated tumor 
in gastric cancer 

[31] 

N. Wang 2021 Front Bioeng 
Biotechnol 

gastrointestinal 
cancer 

DSP Compared with chemotherapy patients, the levels of PD-L1 expression in the 
tumoral region were increased in immunotherapy patients 

[25] 

Y. Wu 2021 Cancer Discov. gastrointestinal 
cancer 

Visium Immunosuppressive cells showed significant spatially reprogramming in the 
metastatic microenvironment 

[6] 

Qi J 2022 Nat Commun gastrointestinal 
cancer 

Visium FAP+ fibroblasts interact with SPP1+ macrophages to regulate the adherent 
proliferative microenvironment and limit immune cell infiltration into the tumor 
core 

[68] 

L. A. Van de 
Velde 

2021 Cancer Res glioma Visium Demonstrated a pathway by which arginine metabolizing myeloid cells and CD4(+) 
T cells synergize with pathogens to facilitate tumorigenesis 

[20] 

Ravi VM 2022 Cancer Cell glioblastoma Visium Showed five differnet spatial transcriptional programs with unique genomic 
changes and common transcriptomic features 
Revealed the bidirectional and unidirectional interactions between 
microenvironment and temporal and spatial variations of GBM transcription 
heterogeneity 

[34] 

Wang YF 2022 Theranostics liver cancer Visium CCL15 enriched in the core region and participated in building an 
immunosuppressive microenvironment 
CCL15 and CD163 relating to a poor prognosis while CCL19 and CCL21 indicated a 
good prognosis 

[44] 

Wu R 2021 Sci Adv liver cancer Visium The relationship between TME remodeling and tumor metastasis and the 
distribution of PROM1(+) and CD47(+) cancer stem cell 
Revealed tertiary lymphoid structures 

[43] 

H. Massalha 2020 Mol Syst Biol liver cancer LCMseq In liver metastases, stromal cells exhibit a recurrent, specific expression program 
and reconstitute the ligand-receptor profile 

[19] 

N. M. Muñoz 2020 Commun Biol liver cancer DSP Molecularly targeted photothermal ablation effectively modulates the progression 
of intratumor myeloid cells to cells with immunogenicity and reduces the systemic 
release of cytokines related to tumorigenesis 

[69] 

A. Sharma 2020 Cell liver cancer DSP VEGF and NOTCH signaling pathways relating to onco-fetal reprogramming [45] 
C. Gong 2021 Cancers (Basel) lung cancer spQSP-IO Developed spQSP-IO, to extend QSP spatially resolved agent-based models for 

immuno-oncology 
[70] 

J. Zugazagoitia 2020 Clin Cancer Res lung cancer DSP Clinical outcomes were only associated with high expression of CD56 and CD4 in 
CD45 compartment 

[38] 

H. B. Schiller 2019 Am J Respir Cell 
Mol Biol 

lung cancer Slideseq; 
MERFISH 

Allowed for molecular characterization with a depth of TME and cellular 
neighborhoods 

[71] 

M. Larroquette 2022 J Immunother 
Cancer 

Lung cancer DSP High CD163+ cell infiltration tumors showed ITGAM, CD27, and CCL5 
upregulation 
High CD163+ cells infiltrated tumors showed high expression of ITGAM, CD27 and 
CCL5 
High interferon-γ signaling pathway gene expression and the M1 phenotype related 

[39] 
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Author Year Journal Type Platform Findings Refs 
to exceptional immunotherapy outcomes in high macrophage infiltration tumors 

P. Nieto 2021 Genome Res melanoama; 
breast cancer; 
oropharyngeal 
squamous cell 
carcinoma; 

Visium Applied SPOTlight, identified the colocalization of various cell types in TME 
including stromal cells, cancer cells and immune-related cells by the combination of 
spatial transcriptomics and scRNA-seq 

[18] 

K. Thrane 2018 Cancer Res melanoma ST Uncovered the components of melanoma metastases with spatially resolved data, 
and showed distinct gene expression profiles 

[72] 

T. Vu 2022 Nat Commun melanoma Visium; DSP Demonstrated the feasibility of detecting protein and mRNA in cancer cells in the 
meantime 

[73] 

E. Zhao 2021 Nat Biotechnol. melanoma; 
breast cancer; 
ovarian cancer 

Visium Showed that undetectable tissue structures previously and identified heterogeneity 
that histology images were unable to uncover 

[74] 

Stur E 2022 iScience ovarian cancer Visium The spatial distribution and especially the spatial interaction of cell clusters showed 
a relationship with the reaction to chemotherapy 

[75] 

Y. Zhu 2021 Cancers (Basel) ovarian cancer SIO The SIO pipeline identified cell markers and interactions among TME by cell 
segmentation and recognition of distinct cell features 

[76] 

Hwang WL 2022 Nat Genet pancreatic 
cancer 

DSP Discovered recurring expression patterns in fibroblasts and cancerous cells 
Discovered three multicellular colonies constituted by a variety of cell subtypes and 
named classical, squamoid-basaloid and treatment enriched 

[50] 

Sun H 2021 Cancer Biol Med pancreatic 
cancer 

Visium Hypoxic circumstances promoted transcriptome variation in spatial in pancreatic 
ductal adenocarcinoma, and identified potential targets for future therapy 

[77] 

M. Elosua-Bayes 2021 Nucleic Acids Res pancreatic 
cancer 

SPOTlight Distinguished the tumor infiltrated and normal area, and mapped the distribution 
of tumoral special and clinically associated immune cell states 

[78] 

K. Young 2021 Gut pancreatic 
cancer 

DSP The MLP-1 subtype was strongly linked with increased expression levels of 
immune genes, poor outcomes and an outbreak of tumor evolution 

[49] 

M. R. Farren 2020 JCI Insight pancreatic 
cancer 

DSP Immunologically relevant proteins in different regions of the tumor 
microenvironment showed a noticeable change in spatial distribution and 
expression condition 
Significant changes were found in the spatial distribution and expression of 
immune-related proteins in different regions of the TME 

[79] 

R. Moncada 2020 Nat Biotechnol pancreatic 
cancer 

Visium Inflammatory fibroblasts colocalized with stress-response genes expressed cancer 
cells 

[17] 

Q. Song 2021 Brief Bioinform pancreatic 
cancer 

Visium Introduced deconvoluting spatial transcriptomics data through graph-based 
convolutional networks (DSTG) 

[80] 

Brady L 2021 Nat Commun prostate cancer DSP Regarding tumor phenotype, there showed an intrapatient analogy 
Metastatic prostate cancer with high androgen receptor activity showed high 
expression of B7-h3/CD276 

[55] 

E. Berglund 2018 Nat Commun prostate cancer ST Gradients pf gene expression found in the stroma adjacent, allowing for relayering 
of the TME 

[26] 

E. Chelebian 2021 Cancers prostate cancer Visium Morphological images had certain relations with the molecular spectrum, which 
can predict the spatial distribution of a single gene 

[81] 

S. Friedrich 2020 BMC Med 
Genomics 

prostate cancer Visium Explored a new method named STfusion which could help the spatial resolved 
localized of fusion transcripts in single cell level 

[82] 

Y. Wang 2020 Sci Rep prostate cancer Visium Found that the tumor had higher levels of prostaglandin metabolic-related 
transcriptomes than the adjacent tissue 

[22] 

A. L. Ji 2020 Cell squamous cell 
carcinoma 

Visium Colocalization of Tregs and CD8+ T cells in the stroma of stroma and such potential 
immunosuppressive mechanisms were uncovered 

[7] 

M. Tarabichi 2021 Mol Cell 
Endocrinol 

thyroid cancer ST Showed that in the epithelial areas of this PTC there was increasing VIM 
transcription, including areas without fibroblasts 

[83] 

K. H. Hu 2020 Nat Methods N/A FISSEQ Showed a peripheral to central track of myeloid and T-cell development [84] 
Y. Lee 2021 Sci Adv N/A XYZeq Determined local expression of tumor suppressor genes by mesenchymal stem cells, 

which changes with proximity to the tumor core 
[85] 

A. 
Levy-Jurgenson 

2021 Bioinformatics. N/A HTA Created tumor molecular maps and whole-image heterogeneity maps, and 
developed a heterogeneity index 

[86] 

B. T. Grünwald 2021 Cell pancreatic 
cancer 

N/A Concurrent intratumoral subTME generated patient’s individual phenotypes and 
calculated predictable heterogeneity that was closely related to the biology of 
malignancy 

[87] 

S. Kumar 2020 Bio Protoc glioma N/A Developed a method to classify tumor cells based on their relative distance from 
blood vessels 

[88] 

Abbreviations: CDH12: Cadherin 12; TFH: T follicular helper cells; Th1: T helper cell 1; CD248: tumor endothelial marker-1; HER2: human epidermal growth factor receptor 
2; GATA3: GATA binding protein 3; estrogen receptor alpha; CD137: Cluster of Differentiation 137; MART1: melanoma antigen recognized by T-cells 1; PD-L1/PD-L2: 
programmed death-ligand 1/ programmed death-ligand 2; FAP: fibroblast activation protein; SPP1: secreted phosphoprotein 1; CD4: cluster of differentiation 4; CCL15: 
chemokine (C-C motif) ligand 15; CD163: cluster of differentiation 163; CCL19: chemokine (C-C motif) ligand 19; CCL21: Chemokine (C-C motif) ligand 21; TME: tumor 
microenvironment; PROM1: prominin 1; CD47: cluster of differentiation 47; VEGF: vascular endothelial growth factor; spQSP-IO: spatial quantitative systems pharmacology 
for immuno-oncology; QSP: quantitative systems pharmacology; CD163: cluster of differentiation 163; CD56: cluster of differentiation 56; CD45: cluster of differentiation 45; 
ITGAM: integrin alpha M; CD27: cluster of differentiation 27; CCL5: chemokine (C-C motif) ligand 5; SIO: SpatioImageOmics; DSTG: deconvoluting spatial transcriptomics 
data through graph-based convolutional networks; B7-h3/CD276: B7 homolog 3/ cluster of differentiation 276; CD8: cluster of differentiation 8; PTC: papillary thyroid 
carcinoma; VIM: Vimentin. 

 
 

3.3 Liver cancer 
Globally, liver cancer is one of the most common 

cancers and was the sixth most diagnosed among all 
sites of cancer and the fourth most common cause of 
mortality in 2018, and the incidence and mortality 

showed a sex difference, with males being at high risk 
for liver cancer [42]. To analyze the heterogeneity of 
the TME with spatial data, researchers have already 
applied ST in liver cancer and obtained certain results. 

Wu et al. performed ST on 21 tissues from seven 
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patients with primary liver cancers based on Visium 
to investigate the gene expression states in different 
foci of the TME, and they revealed the relationship 
between the remodeling of the TME and tumor 
metastasis and the distribution of PROM1(+) and 
CD47(+) cancer stem cells [43]. In addition, they 
uncovered a TLS precisely by proposing the TLS-50 
signature [43]. Additionally, based on the platform of 
Visium, Wang et al. identified the malignant subsets 
of the TME of hepatocellular carcinoma by 
hierarchical clustering, and they discovered the 
enrichment of CCL15 in the core region of the tumor 
that participated in the construction of an immuno-
suppressive microenvironment, which is also a 
molecular sign indicating poor prognosis together 
with CD163[44]. 

In combination with scRNA-seq, Sharma et al. 
applied ST (GeoMx DSP) to hepatocellular carcinoma 
and uncovered the oncofetal reprogramming of the 
tumor ecosystem in which VEGF and NOTCH 
signaling played a significant role [45]. 

3.4 Gastrointestinal cancer 
Gastric cancer is the fifth-highest diagnosed 

cancer in both sexes and the third-highest cause of 
death in all cancers, especially in males, while 
colorectal cancer is the third-highest in incidence and 
the second-highest in mortality both in males and 
females [42]. However, clinically, spatial transcrip-
tomics has not been widely used in defining 
heterogeneity within gastrointestinal cancers, in 
which research is urgently needed. 

Kumar et al. combined ST (GeoMx DSP), bulk 
RNA-seq cohorts for quadrature validation, and 
confirmed the results with in vitro and vivo models 
and provided a high-resolution molecular resource of 
within-patient and between-patient pedigree status 
across different gastric cancer subtypes [46]. 

Wang et al. performed ST (GeoMx DSP) on 
tissue sections from patients treated by only 
neoadjuvant chemotherapy or in conjunction with 
immunotherapy, which profiled both the mRNA and 
protein levels and uncovered significant immune 
infiltration at tumor areas linked to immunotherapy 
treatment [25]. Additionally, Wu et al. sequenced 97 
samples of liver metastasis patients with colorectal 
cancer by scRNA-seq and ST (Visium) and discovered 
that immunosuppressive cells in the metastatic 
microenvironment experienced prominent spatial 
reorganization [6]. 

3.5 Pancreatic cancer 
Pancreatic cancer has the highest mortality rate 

of all cancers, with a 5-year survival rate that has not 
improved since the 1960s in the United States, which 

is only approximately 10% [47, 48]. In addition, most 
patients with pancreatic cancer seek clinical advice at 
an advanced stage due to its unique anatomical 
position, and overall, the prognosis of pancreatic 
cancer is poor. 

Thus, in recent years, researchers have already 
begun to investigate pancreatic cancer with the 
assistance of scRNA-seq and ST and brought insights 
in diagnoses, analysis of heterogeneity and therapy of 
pancreatic cancer. Young et al. identified the 
metastasis-like primary (MLP)-1 subtype as a 
phenotype with extensive and powerful activation of 
immune-related genes applying the DSP platform 
[49]. This study provides the basis for future precision 
immunotherapy studies for MLP-1 patients. Moncada 
et al. proposed a multimodal intersection analysis 
combining scRNA-seq and a microarray-based spatial 
transcriptomics method (Visium) to study the 
heterogeneity of the TME of pancreatic cancer [17]. 
They described the spatial distribution of distinct cell 
types and subpopulations and showed distinct 
co-enrichments between different cell types [17]. 

With the combination of single-nucleus RNA 
sequencing, Hwang et al. performed ST (DSP) on 43 
primary pancreatic ductal adenocarcinoma (PDAC) 
tumor specimens, and they identified recurring 
expression patterns in fibroblasts and cancerous cells 
and uncovered three multicellular colonies 
constituted by a variety of cell subtypes [50]. 

3.6 Bladder cancer 
Bladder cancer is the most diagnosed malignant 

tumor in the urinary system, and there were 549,393 
new cases in 2018, accounting for 3.0% of all types of 
cancer and causing 199,922 deaths in the same year 
[42]. The postponement of diagnosis, especially for 
females, is the most significant factor in the mortality 
of bladder cancer [51]. 

Compared to the aforementioned tumors, 
bladder cancer has not been extensively addressed by 
ST. In one case, Gouin et al. incorporated ST (Visium) 
with single-nucleus RNA-seq and spatial proteomic 
analysis on bladder cancer and classified an epithelial 
subtype (expressing Cadherin 12, catenin, and other 
epithelial markers), which was closely related to the 
therapeutic response in which Cadherin 12-enriched 
tumors showed a superior reaction to immune 
checkpoint therapy compared with neoadjuvant 
chemotherapy [52]. This study shows the potency of 
ST in the analysis of intact tissue from human bladder 
cancer, and the approach of multimodal omics 
warrants further study. 

3.7 Prostate cancer 
Prostate cancer, the second most common cancer 
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in males and the fifth leading cause of death of all 
cancers [53], is a disease mostly occurring in aging 
males. However, the classification of prostate cancer 
varies from less aggressive localized to metastatic, 
which is incurable despite present treatment 
strategies [54]. 

Applied ST (DSP) to quantitatively analyze 
transcript and protein abundance with spatially 
resolved distribution, Brady et al. compared the 
heterogeneity between inter- and intratumor prostate 
cancer with the biological behavior of metastasis and 
identified homogeneity concerning tumor phenotype 
[55]. In contrast to the declining expression of 
PD1/PD-L1 and CTLA4, the immune checkpoint 
protein B7-H3/CD276 showed abnormally high 
expression, especially in phenotypes with androgen 
receptor activation [55]. By comparing tumoral and 
adjacent tissue by ST (Spatial Transcriptomics), 
Berglund et al. distinguished tumoral focus accurately 
with help from pathologic description, and they 
re-stratified the TME of prostate cancer [26]. Wang et 
al. found high expression of the prostaglandin gene in 
tumors, and they discovered new targets with 
metabolic vulnerability by small molecular drugs 
using the 10x Genomics Visium[22]. Moreover, they 
predicted that inhibitors of SCD1 and SLCO2A1, 
which are fatty acid desaturases and transporters of 
prostaglandin, may slow tumoral progression. 

4. Conclusion and future perspectives 
Since the first application of ST in 2016, which 

was developed by Ståhl et al., this technology has 
already been widely applied in distinct fields, 
including neuroscience, oncology, developments of 
organ and plant biology. With the advantage of 
retaining spatial distribution when performing 
transcriptome sequencing, ST shows its superiority in 
the analysis of gene expression in distinct foci of 
tissue, the interactions between disparate compart-
ments of tissues and the mechanism of drug 
resistance. Thus, the application of ST in the 
investigation of compartmentalization of the TME has 
become a routine strategy for researchers.  

The value of spatial transcriptomics extends 
beyond studying the biological characteristics of 
tumors, as it also has implications for clinical 
diagnosis, treatment, and prognosis prediction in 
cancer research. By combining deep learning and 
spatial transcriptomics, it is possible to more 
accurately distinguish tumor-enriched regions, 
non-tumor regions, and tumor-infiltrated regions [36, 
57, 58], thus providing a more accurate assessment of 
the extent of tumor infiltration and facilitating a 
refined classification of tumors based on gene 
expression. ST has the potential to enable the 

development of a novel pathology system known as 
"spatially resolved molecular pathology". Through the 
use of high-throughput sequencing, this system 
would offer significant advantages over traditional 
methods and could represent a major step forward in 
the field of molecular pathology. In addition, ST can 
assist clinical physicians in selecting individualized 
anti-tumor therapies and predicting patient prognosis 
by identifying specific gene expressions in the 
patient’s tumor tissue and the three-dimensional 
immune structure of the TME. This approach 
represents a promising avenue for advancing the field 
of precision medicine. 

Presently, ST has been widely performed to 
understand the heterogeneity of the TME in solid 
tumors, especially in breast cancer, and has already 
shown achievements. Conversely, in nonsolid tumors, 
especially tumors originating from the hematological 
system, the application of ST is inadequate, and we 
envision that ST technology will demonstrate 
feasibility in bone marrow tissue sections. 

However, the restriction of resolution and 
sensitivity are still challenges for ST. To confront these 
technical shortcomings, two scenarios are feasible, 
which include improving the resolution and accuracy 
of ST and integration with other technologies. We 
anticipate the establishment of ST technology with 
higher resolution, and presently researchers are 
seeking the possibility of merging multiple omics in 
tissue analysis. To provide single-cell datasets, ST 
combined with scRNA-seq has already been widely 
used in the study of the TME, and to validate the 
quantitative analysis of gene expression, proteomics 
was incorporated with ST. With the development of 
next-generation sequencing, the era of single-cell 
multiomics, including and not restricted to genomics, 
single-cell transcriptomics, spatial transcriptomics 
and proteomics, is around the corner, which offers an 
opportunity for analyzing DNA, mRNA, and proteins 
at single-cell resolution. With the maturation of 
single-cell multiomics, we believe that we will gain 
deeper insights into tumorigenesis, progression and 
metastasis and thus propose the development of new 
strategies for antitumor therapies. 

Abbreviations 
IR: infrared ray; UV: ultraviolet ray; scRNA-seq: 

single-cell RNA sequencing; NGS: next-generation 
sequencing; ST: spatial transcriptomics; ISH: in situ 
hybridization; FISH: fluorescent in situ hybridization; 
WM ISH: whole-mount ISH; LCM: laser capture 
microdissection; smFISH: single molecular FISH; ISS: 
in situ sequencing; DSP: GeoMX digital spatial 
profiler; MERFISH: multiplexed error-robust FISH; 
FISSEQ: fluorescent in situ sequencing; DBiT-seq: 
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deterministic barcoding in tissue for spatial omics 
sequencing; COVID: corona virus disease; 
MHC: major Histocompatibility Complex; APOE: 
apolipoprotein E; TRBC1: T-Cell Receptor Beta 
Constant 1; HLA: human leukocyte antigen; ERBB2: 
Erb-B2 Receptor Tyrosine Kinase 2; EPCAM: 
epithelial cell adhesion molecule; CDH1: Cadherin 1; 
CD4: cluster of differentiation 4; IMPC: invasive 
micropapillary carcinoma; TME: tumor microen-
vironment; CNV: copy number variation; PD-1: 
programmed death-1; PD-L1: programmed death- 
ligand 1; DC: Dendritic cell; Tregs: regulatory T cells; 
MIBI-TOF: multiplexed ion beam imaging 
time-of-flight mass spectrometry; CNN: convolutional 
neural networks; NSCLC: non-small-cell lung cancer; 
CD163: cluster of differentiation 163; ITGAM: integrin 
alpha M; CD27: cluster of differentiation 27; CCL5: 
chemokine (C-C motif) ligand 5; CSF1R: colony 
stimulating factor 1 receptor; HER-2: human 
epidermal growth factor receptor 2; PROM1: 
prominin 1; CD47: cluster of differentiation 47; TLS: 
tertiary lymphoid structure; CCL15: chemokine (C-C 
motif) ligand 15; VEGF: vascular endothelial growth 
factor; MLP-1: metastasis-like primary; PDAC: 
pancreatic ductal adenocarcinoma; CTLA4: cytotoxic 
T-lymphocyte associated protein 4; B7-H3/CD276: B7 
homolog 3/ cluster of differentiation 276; SCD1: 
stearoyl-CoA desaturase 1; SLCO2A1: solute carrier 
organic anion transporter family member 2A1; cDNA: 
complementary DNA; ROI: regions of interest; FFPE: 
formalin-fixed, paraffin-embedded. 
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