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Abstract 

High-mobility group protein box 1 (HMGB1) is a member of a highly conserved high-mobility group 
protein present in all cell types. HMGB1 plays multiple roles both inside and outside the cell, depending 
on its subcellular localization, context, and post-translational modifications. HMGB1 is also associated 
with the progression of various diseases. Particularly, HMGB1 plays a critical role in CKD progression 
and prognosis. HMGB1 participates in multiple key events in CKD progression by activating downstream 
signals, including renal inflammation, the onset of persistent fibrosis, renal aging, AKI-to-CKD transition, 
and important cardiovascular complications. More importantly, HMGB1 plays a distinct role in the 
chronic pathophysiology of kidney disease, which differs from that in acute lesions. This review describes 
the regulatory role of HMGB1 in renal homeostasis and summarizes how HMGB1 affects CKD 
progression and prognosis. Finally, some promising therapeutic strategies for the targeted inhibition of 
HMGB1 in improving CKD are summarized. Although the application of HMGB1 as a therapeutic target 
in CKD faces some challenges, a more in-depth understanding of the intracellular and extracellular 
regulatory mechanisms of HMGB1 that underly the occurrence and progression of CKD might render 
HMGB1 an attractive therapeutic target for CKD. 
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1. Introduction 
Chronic kidney disease (CKD), a devastating 

disease affecting human health worldwide, is 
characterized by progressive and irreversible nephron 
loss, reduced renal regenerative capacity, microvas-
cular damage, changes in inflammation, metabolic 
and oxidative stress, and fibrosis, ultimately leading 
to renal failure and end-stage renal disease (ESRD)[1, 
2]. CKD affects approximately 10–14% of the global 
population and is the leading cause of ESRD and 
premature death[3]. The contribution of CKD to 
global mortality is rapidly increasing due to the rising 
prevalence of diabetes, hypertension, obesity, and an 
aging population[4]. However, current treatments 
have limited efficacy and merely delay disease 
progression. Therefore, it is essential to identify new 

potential therapeutic targets to halt or reverse CKD 
progression. 

High-mobility group protein box 1 (HMGB1) is a 
member of the high-mobility group proteins with 
secretory and intracellular activities[5]. HMGB1 is 
ubiquitously expressed in almost all cell types and is 
involved in cellular damage and repair. The biological 
activity of HMGB1 depends on its subcellular locali-
zation, context, and post-translational modifications 
(PTMs). HMGB1 acts as a DNA chaperone in the 
nucleus and is involved in DNA repair, chromatin 
remodeling, nucleosome assembly, and telomere 
maintenance. In the cytoplasm, HMGB1 acts as an 
autophagy maintainer and mitochondrial homeo-
stasis regulator to regulate cell death. Extracellularly, 
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HMGB1 acts as a damage-associated molecular 
pattern (DAMPs) or alarmin to activate the immune 
response and promote cell migration and 
proliferation[6]. HMGB1 has been discovered for 50 
years (Figure 1). In recent years, an increasing number 
of HMGB1 inhibitors have shown promising 
therapeutic potential for a variety of diseases[7, 8]. 
HMGB1 plays an indispensable role in the 
pathogenesis and progression of CKD. The kidney is 
the best responder to HMGB1 because of the largest 
changes in HMGB1 in kidney tissue in the early stage 
of hemorrhagic shock[9]. Under CKD conditions, 
HMGB1 is elevated in the plasma, serum, and urine 
and is closely related to the progression and prognosis 

of CKD. As a core player, activated HMGB1 partici-
pates in multiple key events of CKD progression 
through the activation of downstream signals, 
including renal inflammation, the development of 
persistent fibrosis, renal aging, AKI-CKD transition, 
and important cardiovascular complications. 
Interestingly, studies have shown that HMGB1 
deletion in renal tubules has no noticeable effect on 
renal injury in the early stage after unilateral ureteral 
obstruction (UUO) but greatly alleviates renal 
interstitial fibrosis in the late/subacute stage[10], 
suggesting that HMGB1 may play additional roles in 
CKD than differ from those in acute kidney injury. 

 

 
Figure 1. Timeline of landmark achievements of HMGB1 in CKD in the past 50 years.  
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Figure 2. Structure and redox reaction of HMGB1. (HMGB1 is composed of A-box, B-box, C-terminal acidic tail, and a short but functionally significant N-terminal region, 
with nuclear localization signals and three redox-sensitive cysteine residues. HMGB1 can be classified into three subtypes: fully reduced HMGB1, disulfide HMGB1, and fully 
oxidized HMGB1.)  

 
In this review, we evaluate the links between 

HMGB1 and CKD, starting with a description of the 
biological characteristics of HMGB1 in CKD and its 
regulatory role in renal homeostasis, followed by 
valuable preclinical and clinical evidence, summari-
zing how HMGB1 regulates key events related to 
CKD to affect its progression and prognosis. Finally, 
we describe strategies to reduce or inhibit HMGB1 in 
CKD, providing insights into the innovation of 
therapeutic strategies targeting HMGB1 in CKD. 

2. The biology of HMGB1 
The HMGB protein family is the most abundant 

among high-mobility groups. Four members 
(HMGB1, HMGB2, HMGB3 and HMGB4) of the 
mammalian HMGB family have been identified so far; 
among them, HMGB1 shows the highest expression. 
HMGB1, a non-histone nuclear protein, was first 
discovered in 1973 and named for its high electro-
phoretic mobility. HMGB1 is highly evolutionarily 
conserved, as evidenced by the 99% homology 
between rodent and human amino acid sequences. 
HMGB1 is essential for life as mice with systemic 
HMGB1 deletions die from hypoglycemia shortly 
after birth[11]. Of note, HMGB1 can cross organelles 
from the nucleus at higher concentrations into the 
cytoplasm in response to stress injury within 1–2 
seconds[12]. 

2.1 The structure and distribution of HMGB1 
Human HMGB1 consists of 215 amino acid 

residues that form two homologous DNA-binding 

domains (A-box and B-box), a negatively charged 
C-terminal acidic tail, and a short but functionally 
significant N-terminal region (Figure 2). HMGB1 
contains three redox-sensitive cysteine residues (C23, 
C45, and C106). C23 and C45 can form intramolecular 
disulfide bonds, while C106 is unpaired. Based on the 
redox status of the three cysteine residues, HMGB1 
can be classified into three subtypes: fully reduced 
HMGB1 (fr-HMGB1, with three conserved cysteine 
residues containing thiol groups), disulfide HMGB1 
(ds-HMGB1, partially oxidized), and fully oxidized 
HMGB1 (ox-HMGB1, sulfonyl HMGB1). fr-HMGB1 
can bind to other chemokines to promote immune cell 
migration and tissue regeneration. ds-HMGB1 can 
activate immune cells to produce cytokines/ 
chemokines and exhibit a higher affinity for the 
nuclear export of CRM1[13]. However, ox-HMGB1 
exhibited no chemokine or cytokine activity. 
Importantly, the exchange between fr-HMGB1 and 
ds-HMGB1 is reversible, while that with ox-HMGB1 
is irreversible[14]. 

2.2. The distribution and function of HMGB1 
HMGB1 is highly expressed in various kidney 

cells, and its role in CKD pathogenesis depends on its 
subcellular localization (Figure 3). In the nucleus, 
HMGB1 promotes the repair of damaged DNA and 
the maintenance of nucleosome homeostasis and 
telomere homeostasis. In particular, the retention of 
HMGB1 in the nucleus improves the differentiation of 
peripheral B cells and the phagocytic capacity and 
chemotactic response of macrophages[15, 16]. In the 
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cytoplasm, HMGB1 is primarily involved in regu-
lating autophagy, mitochondrial function, and 
apoptosis. Extracellular HMGB1 primarily serves as a 
DAMP and participates in many immune responses 
by promoting immune cell maturation, activation, 
and cytokine production[17]. More importantly, 
extracellular HMGB1 is associated with cell death. 
extracellular HMGB1 can be internalized and targeted 
to lysosomes, inducing lysosomal membrane 
permeabilization (LMP) and accelerating subsequent 
cell death[18, 19]. 

2.3. The modification and regulation of 
HMGB1 

The localization and activity of HMGB1 are 
affected by PTMs[20], including acetylation, methyla-
tion, phosphorylation, poly-ADP-ribosylation, and 
glycosylation. Acetylation enhances the ability of 
HMGB1 to bend DNA and prevents HMGB1 from 
re-entering the nucleus[21, 22]. Resveratrol (a natural 
SIRT1 agonist) pretreatment promoted the nuclear 
retention of HMGB1 by reducing HMGB1 acetylation, 
thereby improving renal inflammation and tubular 
injury[23]. Methylation changes the conformation of 

HMGB1 and weakens its DNA-binding activity, 
allowing its massive passive diffusion into the 
cytoplasm and subsequent secretion extracellu-
larly[24]. Phosphorylation also limits the nuclear 
localization of HMGB1 by modifying its two NLS [25]. 
Poly (ADP)-ribose polymerase (PARP) also promotes 
the nuclear release of HMGB1 into the extracellular 
environment[26]. Poly-(ADP)-ribosylated HMGB1 not 
only downregulates gene transcription[27, 28] but 
also inhibits efferocytosis in macrophages to a 
significant extent, thereby promoting inflamma-
tion[29]. In turn, the deletion of HMGB1 leads to 
excessive PARP-1 activation, which exacerbates 
mitochondrial damage and cell death[30]. In addition, 
PARP-1 also induced the release of HMGB1 from 
proximal tubular cells[31]. Glycosylation plays a 
crucial role in HMGB1secretion. N-glycosylation 
weakens the binding of HMGB1 to DNA and 
enhances its binding to the nuclear export protein 
CRM1, a prerequisite for HMGB1 cytoplasmic 
transport and extracellular secretion[32]. In addition, 
N-glycosylation of HMGB1 leads to reduced binding 
to glycyrrhizin, an HMGB1 inhibitor[33]. Recent 
studies have demonstrated that O-glcnacylation can 

 

 
Figure 3. The distribution and function of HMGB1. (HMGB1 can cross organelles from the nucleus at higher concentrations into the cytoplasm in response to stress 
injury. The function of HMGB1 is related to its subcellular structure. In the nucleus, HMGB1 plays an important role in DNA replication and repair, chromatin remodeling, 
nucleosome assembly, and telomere maintenance; In the cytoplasm, HMGB1 is primarily involved in regulating autophagy, mitochondrial function, and apoptosis; Extracellular 
HMGB1 primarily serves as a DAMP and participates in many immune responses, can also promote cell migration and proliferation.) 
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also modify HMGB1, resulting in its reduced ability to 
repair DNA[34]. Recently, S-nitrosylation has been 
shown to promote HMGB1 secretion and proinflam-
matory effects[35]. Ubiquitination modification helps 
promote HMGB1 degradation and improves disease 
progression[36]. Ubiquitin-specific protease-12 deubi-
quitinates and stabilizes HMGB1 to promote 
autophagy by interacting with HMGB1[37]. However, 
another study showed that compared with the 
ubiquitination pathway, the autophagy-lysosome 
pathway plays a major role in HMGB1 degradation, 
and the activation of autophagy and an increase in 
CTSB promote HMGB1 degradation and nuclear 
translocation[38]. 

2.4. Secretion and release of HMGB1 
Under the action of various stressors (such as 

hypoxia, cytokines, chemokines, and uremic toxins) in 
CKD, HMGB1 is secreted externally through an 
unconventional protein secretion pathway in an 
active or passive manner, rather than through the 
conventional endoplasmic reticulum-Golgi path-
way[6]. At present, two main secretion pathways of 
HMGB1 have been proposed. One is the direct, 
pore-mediated secretion of HMGB1 by pyroptosis or 
activated target cells[39]; the other is secretory 
autophagy, which packages HMGB1 into intracellular 
vesicles (such as lysosomes or autophagosomes) and 
releases HMGB1 through exocytosis[40]. However, 
these two pathways are difficult to distinguish 
because they occur simultaneously in most pyroptotic 
cells[39]. The regulatory mechanism underlying 
HMGB1 secretion is complex and involves several 
pathways. Oxidative stress is known to be an 
important factor in regulating HMGB1 secretion[41]. 
HMGB1 is secreted through a ROS-dependent 
mechanism under hypoxia, and targeted inhibition of 
ROS production significantly reduces HMGB1 
secretion. Nuclear factor erythroid 2-related factor 2 
(Nrf2) is a key transcription factor regulated by 
oxidative stress. Nrf2 knockdown abolishes the 
regulatory effect of antioxidants on HMGB1[42]. 
Notably, the regulation of HMGB1 secretion by 
oxidative stress is driven by calcium signaling[43]. 
The inhibition of calcium/calmodulin-dependent 
kinase resulted in a significant reduction in HMGB1 
secretion. Calcium overload promotes the release of 
phosphorylated HMGB1[44]. Moreover, HMGB1 
release mediates calcium influx by promoting calcium 
channel activation [45]. In addition, the cytoplasmic 
translocation and secretion of HMGB1 are also tightly 
regulated by the nuclear export protein CRM1. The 
inhibition of CRM1 expression significantly reduced 
circulating HMGB1 levels[46]. In addition, several 
cathepsin family members also promote HMGB1 

secretion. Under stress, the permeability of the 
lysosomal membrane is altered, leading to the release 
of cathepsins and other hydrolases in the cytoplasm 
and their subsequent translocation to the nucleus, 
inducing the formation of the NLRP3 inflammasome 
complex, ultimately leading to increased HMGB1 
secretion[47, 48]. The released HMGB1 targets LPS 
internalization into lysosomes through RAGE and 
mediates lysosomal leakage, which activates caspase 
11 and promotes pyroptosis[18]. Targeted inhibition 
of HMGB1 binding to LPS improves lysosomal 
rupture and attenuates caspase 11-mediated sepsis- 
related lethality[49]. A recent study showed that TLR4 
also increases the expression of caspase 11 through 
LPS uptake and that activated caspase 11 promotes 
the cleavage of gasdermin D, resulting in increased 
calcium release from the endoplasmic reticulum, 
which in turn promotes HMGB1 secretion[50]. 

3. HMGB1 and renal homeostasis 
HMGB1 is expressed in a variety of kidney cell 

types, including glomerular epithelial cells (podo-
cytes), endothelial cells, tubular cells, inflammatory 
mononuclear phagocytes, and lymphocytes. In case of 
injury, renal tubular epithelial cells and podocytes are 
the main sources of HMGB1, and mesangial and 
endothelial cells also express HMGB1[51], which in 
turn promotes apoptosis and renal inflammation. 
Although macrophage-derived HMGB1 plays an 
important role in many diseases[52, 53], studies have 
shown that macrophage-derived HMGB1 does not 
aggravate renal fibrosis after UUO[54]. In contrast, the 
deletion of bone marrow-derived RAGE contributed 
to the improvement of renal function in a DKD mouse 
model[55], indicating that macrophages may only be 
effectors of HMGB1 rather than the main secretory 
source during kidney injury, especially in CKD. In 
this section, we summarize the important regulatory 
effects of HMGB1 on various intrinsic kidney cell 
types to maintain kidney homeostasis. The effects of 
HMGB1 on intrinsic renal cells in various kidney 
disease models are summarized in Table 1 and Figure 
4. 

3.1 HMGB1 and proximal tubule epithelial cell 
Proximal tubular epithelial cells (PTECs) are the 

major epithelial cell type in the cortex. The effects of 
HMGB1 on PTECs function have been extensively 
studied. HMGB1-mediated tubular injury and renal 
fibrosis are seemingly hallmarks of chronic 
processes[10]. In the early stages of PTEC injury, 
HMGB1 secretion promotes rapid γδ T-cell infiltration 
and mediates an early immune response to renal 
injury[56]. In the late stage of kidney injury, PTECs 
reduce HMGB1 secretion through locally produced 
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propertin (a positive regulator of the alternative 
complement pathway), thereby reducing macrophage 
infiltration and enhancing the phagocytic capacity of 
PTECs, which in turn curtails apoptosis and kidney 
inflammation[57]. In addition, free light chains (FLCs) 
promote the secretion of HMGB1 by PTECs and the 
expression of TLR2, TLR4, and TLR6, resulting in an 
overload of the endocytic pathway of FLCs, which 
triggers inflammation and cell damage[58]. HMGB1 
also promotes transforming growth factor β (TGF-β) 
and connective tissue growth factor (CTGF) 
expression and induces epithelial-mesenchymal 
transition (EMT) of PTECs, ultimately accelerating 

renal fibrosis[59-61]. 
Notably, HMGB1 is involved in renal tubular 

injury caused by various nephrotoxic drugs. For 
instance, imidacloprid stress induces Nrf2 inactiva-
tion and mediates HMGB1/RAGE/TLR4 signaling 
activation, thereby triggering iron death and leading 
to the initial wave of death that fuels pyroptosis and 
exacerbates renal dysfunction[62]. Similarly, cyclo-
sporine, aristolochic acid I, and calcineurin inhibitors 
also promote HMGB1 secretion by tubular cells, 
aggravating tubular injury and renal fibrosis[63-65], 
suggesting that HMGB1 might serve as an early 
indicator and marker of progressive nephrotoxicity. 

 
 

Table 1. HMGB1 effects in renal resident cells. 

Cell types Types of study Experimental models Pathway HMGB1-mediated effects References 
Proximal tubule 
epithelial cell 

In vitro, In vivo UUO TNFα/Casp3/GSDME/HMGB1 Promote inflammation, PTEC damage and fibrosis [10] 
In vitro, In vivo CsA-induced renal 

injury 
HMGB1/TLR4 Promote inflammation and fibrosis [63] 

In vivo HG-induced HK-2 HMGB1/TLR4/Syk Promote NF-κB activation and TGF-β1 production [171] 
In vitro, In vivo Ang II-induced renal 

injury 
NLRP3/HMGB1 Promote EMT and fibrosis [172] 

In vitro, In vivo FLCs-induced renal 
injury 

STAT1/HMGB1/TLR Promote inflammation and PTEC damage [58] 

In vivo AGE-induced HK-2 HMGB1/RAGE Promote the expression of CTGF and TGF-β [59] 
In vivo HMGB1-induced HK-2 HMGB1/RAGE Promote EMT [60] 
In vitro, In vivo UUO C3 / HMGB1 / TGF-β1 Promote EMT and fibrosis [61] 
In vitro, In vivo STZ-induced DKD HMGB1/TLR2/4/NF-κB Promote inflammation [161] 
In vitro, In vivo HFD-fed OLETF rats NLRP3/HMGB1 Promote inflammation and PTEC damage [173] 
In vitro, In vivo IMI-induced renal 

injury 
HMGB1-RAGE/TLR4-NF-κB Promote PTEC Ferroptosis and pyroptosis [62] 

In vivo AAs-induced HK-2 ROS/HMGB1/mt DNA/ TLRs EMT and mitochondrial dysfunction [64] 
In vitro, In vivo CNIs-induced renal 

injury 
/ Promote PTEC mitochondrial dysfunction and 

bioenergetic reprograming 
[65] 

In vivo CaCl2-induced HK-2 HMGB1/TLR4/NF-κB Promote inflammation and autophagy [143] 
In vitro, In vivo UUO / Promote fibrosis [115] 

Podocyte In vitro, In vivo db/db mice / Promote podocyte apoptosis and EMT [71]. 
In vitro, In vivo ADR-induced renal 

injury 
/ Promote podocyte injury and proteinuria [72] 

Mesangial cell In vitro, In vivo MRL/lpr mice TLR2/MyD88/NF-κB Promote glomerular mesangial matrix deposition [76] 
In vivo HG-induced SV40 MES 

13 
HMGB1/NF-κB Promote inflammation [174] 

In vivo HG-induced SV40 MES 
13 

HMGB1/TLR4/NF-κB Promote proliferation, oxidative stress, ECM 
accumulation, and inflammation in mesangial cells 

[175] 

In vivo HMGB1-induced SV40 
MES 13 

HMGB1/PTEN/PI3K/Akt Promote proliferation in mesangial cells [176] 

In vitro, In vivo db/db mice Hspa9/HMGB1 Promote proliferation and fibrosis in mesangial cells  [177] 
In vivo IFN-γ- induced MMC JAK2 / STAT1 Promote lipogenesis in mesangial cells [74] 
In vivo TWEAK and 

anti-dsDNA 
IgG-induced MMC 

TWEAK/Fn14; NF‐κB/PI3K/AKT Promote anti-dsDNA IgG penetration into 
mesangial cells 

[75] 

In vitro, In vivo MRL/lpr mice TLR2/4 and RAGE Promote inflammation [77] 
In vitro, In vivo NAFLD + 

BDCM-induced renal 
injury 

HMGB1/TLR4 Promote mesangial cell activation [78] 

In vivo HMGB1-induced MMC PI3K/Akt Promote proliferation of mesangial cell [79] 
In vivo HG-induced SV40 MES 

13 
TLR4/NF-κB Promote ferroptosis in mesangial cells [80] 

Endothelial cell In vivo HMGB1-induced 
HUVECs 

/ Promote angiogenesis in Endothelial Cells [84] 

In vitro, In vivo MRL/lpr mice TLR4/MyD88 Induced glomerular endothelial cell injury [86]. 
In vivo sera from AAV patients 

GEnCs 
HMGB1/TLR4 Induced glomerular endothelial cell injury [87] 

HG: high glucose; STZ: Streptozocin; FLCs: free light chains; EMT: epithelial-mesenchymal transition; IMI: imidacloprid; CsA: Cyclosporine A; (mt DNA: mitochondrial 
DNA; AAs: aristolochic acids; HFD: High fat diet; ADR: adriamycin. 
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Figure 4. HMGB1 and renal homeostasis. (HMGB1 is expressed in a variety of kidney cell types, especially in proximal tubule epithelial cell and podocyte. In case of injury, 
renal tubular epithelial cells and podocytes are the main sources of HMGB1, and mesangial and endothelial cells also express HMGB1. HMGB1 mediates kidney damage and repair 
through multiple pathways to maintain renal homeostasis.) 

 
Although neutralization of extracellular HMGB1 

is beneficial, intracellular HMGB1 seems to play an 
additional role in renal tubular injury[51]. The 
induction of increased HMGB1 levels in the plasma 
and urine by remote ischemic preconditioning, but 
not by increased infiltration of renal immune cells, 
reportedly reduced the risk of renal injury[66]. 
Indeed, recent studies have also found that HMGB1 
plays a dual role in renal tubules. It has been found 
that HMGB1 binds to TLR4 on PTECs to trigger 
transient protective G1 cell cycle arrest, providing 
renal protection[67], while TLR4 activation on 
non-renal cells has been shown to contribute to renal 
injury[66]. 

3.2 HMGB1 and podocyte 
Podocytes are terminally differentiated glome-

rular epithelial cells that play a key role in 
maintaining the glomerular filtration barrier[68]. 
Podocytes are non-professional antigen-presenting 
cells that are both the target of inflammatory injury 
and active participants[69]. Damaged podocytes are 
one of the primary sources of renal HMGB1 secretion. 
Under injury conditions, podocytes promote renal 
injury by secreting HMGB1 to promote the EMT of 
PTECs, mitochondrial damage, and apoptosis[70]. 
Targeting HMGB1 inhibition or depletion ameliorates 
podocyte injury and EMT by regulating autophagy 

homeostasis[71]. CLEC14a is a single-pass transmem-
brane glycoprotein that exerts a protective effect on 
podocytes. CLEC14a ameliorates podocyte injury by 
improving NF-κB signaling and early growth 
response protein 1 signaling via directly binding to 
HMGB1 and inhibiting its release[72]. In addition, 
deleting bone marrow-derived RAGE improved 
podocyte loss following streptozocin (STZ) 
induction[55]. 

3.3 HMGB1 and mesangial cell 
Mesangial cells (MCs) play an important role in 

maintaining the structural integrity of the glomerular 
microvascular bed and mesangial matrix homeo-
stasis[73]. HMGB1 is an important mediator of MC 
activation. HMGB1 mediates lipid deposition in MCs 
by promoting the transcription and expression of 
sterol regulatory element-binding protein-1 and fatty 
acid synthase [74]. In lupus nephritis (LN), HMGB1 
also enhances the internalization of anti‐double‐
stranded DNA (dsDNA) IgG in MCs by binding to 
dsDNA IgG and activates the MyD88/NF-κB 
pathway[75, 76], which exhibits a synergistic 
proinflammatory effect that mediates the activation of 
MCs[77], leading to renal tubular cell death and 
increased cytokine release[78], thereby aggravating 
proteinuria, glomerulosclerosis, and renal fibrosis in 
LN[76, 79]. The depletion of HMGB1 in MCs inhibits 
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iron death and improves MC proliferation by 
regulating Nrf2 signaling[80]. 

3.4 HMGB1 and endothelial cell 
The population of ECs in the kidney is 

remarkably diverse, and approximately 24 morpholo-
gically and functionally heterogeneous EC types have 
been identified[81]. ECs are extremely sensitive to 
stress, and disruption of endothelial function is 
considered an early event in kidney injury[82]. At the 
early stage of kidney injury, HMGB1 released first 
exacerbates kidney injury by interacting with TLR4 in 
renal ECs (much earlier than in renal tubular 
epithelial cells), leading to EC activation and upregu-
lating the expression of adhesion molecules[83]. 
HMGB1 is an important regulator of ECs. On the one 
hand, HMGB1 induces a proinflammatory response in 
ECs, leading to early changes in barrier permeability 
in ECs. On the other hand, the internalization of 
HMGB1 into ECs promotes the expression of vascular 
endothelial growth factor, which in turn promotes EC 
migration and proliferation[84, 85]. HMGB1 is highly 
expressed in the glomerular ECs of patients with LN. 
HMGB1 promotes the permeability of ECs and the 
shedding of the glycocalyx in the glomerulus and 
disrupts intercellular tight junctions and cytoskeleton 
arrangement, thus aggravating LN-related protein-
uria[86]. Similarly, HMGB1 mediates myeloperoxi-
dase (MPO)-antineutrophil cytoplasmic antibody 
(ANCA)-induced EC activation and glomerular 
damage by triggering moesin phosphorylation and 
secretion and promoting cross-reactivity between 
moesin and the anti-MPO antibody[87]. 

4. Pathogenic roles of HMGB1 in CKD 
HMGB1 is involved in kidney disease progres-

sion. Although the important role of HMGB1 in 
kidney disease has been elegantly described in several 
reviews[88, 89], recent research advances suggest that 
HMGB1 plays an important role in kidney disease, 
especially in CKD, including kidney inflammation, 
fibrosis, ageing, AKI-to-CKD transition, vascular 
calcification, and renal replacement therapy, 
anticipating that strategies to block the interaction 
between HMGB1 and its receptor may be effective in 
preventing the development of CKD (Figure 5). 

4.1 The clinical value of HMGB1 in CKD 
HMGB1 has been confirmed to be associated 

with the occurrence, progression, and prognosis of 
CKD in multiple clinical studies (Table 2). A study 
including 177 CKD patients found that HMGB1 was 
significantly elevated in patients with CKD and 
correlated with estimated glomerular filtration rate 
(eGFR) and markers of inflammation and 

malnutrition[90, 91]. An observational study 
including 20 patients with non-diabetic nephropathy 
found that serum HMGB1 was significantly elevated 
in CKD and independently correlated with the 
accumulation of asymmetric dimethylarginine, 
indicating that HMGB1 is actively involved in CKD 
progression and might lead to the development and 
progression of cardiovascular diseases (CVDs)[92]. In 
terms of pathological typing, a study including 258 
patients with chronic glomerulonephritis (GN) found 
that HMGB1 tended to be significantly elevated in the 
serum of patients with ANCA-GN, Henoch-Schonlein 
purpura nephritis, and IgA nephropathy with 
glomerular crescents[93]. 

In addition, HMGB1 shows good discriminative 
ability for LN. Serum HMGB1 levels are significantly 
elevated in patients with LN and correlate with SLE 
activity[94, 95]. Serum HMGB1 levels also positively 
correlate with proteinuria in patients with LN [94, 95]. 
However, in another study involving 69 patients with 
SLE, no significant correlation was found between 
serum HMGB1 and proteinuria [96]. In the urine of 
patients with LN, HMGB1 was also significantly 
elevated and correlated with the LN class, with higher 
levels of urinary HMGB1 in patients with LN class 
V[97]. Another study found that microparticle 
(MPs)-HMGB1 was elevated in the circulation and 
urine of patients with LN, and MP-HMGB1 in urine 
showed good discriminative ability for the presence 
of LN and disease activity[98]. Notably, at the end of 
follow-up, immunosuppressive treatment only 
reduced HMGB1 expression in the serum and renal 
tissues of class IV LN patients, whereas HMGB1 levels 
in other patients with LN did not change significantly 
before and after treatment, possibly due to persistent 
chronic inflammation[99]. 

The correlation between HMGB1 and renal 
injury in patients with ANCA-associated vasculitis 
(AAV) is particularly strong. A study that collected 
plasma samples from 74 patients with active AAV and 
65 patients with remission AAV found that circulating 
HMGB1 levels were associated with renal involve-
ment and that plasma HMGB1 levels significantly 
correlated with initial serum creatinine and 
eGFR[100]. Similarly, in a study that included 30 
patients with AAV, HMGB1 was significantly 
elevated in AAV patients with renal involvement and 
continued to increase with disease activity[101]. In a 
study including 51 patients with AAV, serum HMGB1 
was found to correlate significantly with disease 
activity and renal involvement and positively 
correlated with serum creatinine and 24-hour urinary 
protein levels in patients with AAV[102]. Similarly, 
urine HMGB1 levels also are associated with renal 
involvement in patients with AAV [103]. 
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Figure 5. Pathogenic roles of HMGB1 in CKD. (HMGB1 plays an important role in kidney disease, especially in CKD, including kidney inflammation, fibrosis, ageing, 
AKI-to-CKD transition, vascular calcification, and renal replacement therapy. Several HMGB1 inhibitors and hemodialysis have shown potential therapeutic effects in improving 
CKD.) 

 

Table 2. Clinical studies of HMGB1 in CKD 

CKD 
population 

sample size 
(CKD/HC) 

Measurement 
method of HMGB1 

Sample 
source 

Major findings References 

GN 258/49 ELISA Serum HMGB1 was expressed in the sera of patients with renal diseases who underwent renal 
biopsies, especially among those who had vasculitis including ANCA-GN, 
Henoch-Schonlein purpura nephritis, and IgAN with glomerular crescents. 

[93] 

CKD 177/48 ELISA Serum HMGB-1 is elevated significantly in CKD patients and correlates with GFR as well as 
markers of inflammation and malnutrition. 

[90] 

CKD 289/61 ELISA Serum HMGB1 levels were significantly higher in CKD patients and related to disease stage [91] 
CKD 20/20 ELISA Serum HMGB-1 were independently associated with asymmetric dimethylarginine. [92] 
LN 50(SLE)/50 ELISA Serum Patients with LN had significantly higher serum HMGB1, and correlated positively to the 

SLE Disease Activity Index. 
[94] 

LN 70(SLE)/35 WB and ELISA Serum Serum HMGB1 levels are related to SLEDAI scores and proteinuria. [95] 
LN 69(SLE)/17 WB Serum 

And Urine 
Serum and urinary levels of HMGB1 were significantly increased in patients with active 
LN. 

[96] 

LN 61(SLE)/14 WB Urine HMGB1 is elevated in the urine of patients with active LN, and associated with LN class. [97] 
LN 44(LN)/16(SLE) Flow cytometry Pbmcs 

And Urine 
High frequencies of MP-HMGB1 in urine of LN patients [98] 

LN 35(LN)/0 WB Serum serum levels of HMGB1 were increased in LN, and there was no change  
after immunosuppressive therapy. 

[99] 

ANCA 74(active 
AAV)/65(active 
AAV) 

ELISA Plasma plasma levels of HMGB1 correlated with initial serum creatinine, and estimated 
glomerular filtration rate. 

[100] 

ANCA 25/13 WB Serum HMGB1 is significantly increased in AAV with renal involvement. [101] 
ANCA 51(VAs)/46(HC) ELISA  Serum positive correlation between serum HMGB1 levels and Scr, and 24-hour proteinuria [102] 
CAPD 62/31 ELISA  Serum HMGB-1 was elevated significantly in CAPD patients and correlated with indicators of 

inflammation and malnutrition. 
[136] 

ESRD 151(HD)/ 102(PD) ELISA Serum Serum level of HMGB1 in patients on HD was higher than PD, and patients with higher 
HMGB1 had more complications than patients with lower HMGB1, but there was no 
difference for the survival rate. 

[138] 

GN: glomerulonephritis; CKD: chronic kidney disease; LN: lupus nephritis; ANCA: antineutrophil cytoplasmic antibody; CAPD: continuous ambulatory peritoneal dialysis; 
ESRD: end-stage renal disease; WB: western blot; ELISA: enzyme linked immunosorbent assay 

 

4.2 Renal inflammation and fibrosis 
Patients with CKD experience persistent 

inflammation in the early stages, which determines 
the progression of most kidney diseases. Cells 

exposed to the kidney disease environment undergo 
phenotypic changes and overproduce proinflamma-
tory cytokines, which in turn contribute to the 
recruitment of cells involved in innate and adaptive 
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immune responses, further amplifying inflammation 
and damage to the kidney[104]. HMGB1 is an 
emerging mediator of renal inflammation. Mechanis-
tically, On the one hand, HMGB1 activates the NF-κB 
pathway by interacting with RAGE and TLR4 in 
kidney cells[105, 106]; On the other hand, by 
promoting the recruitment and activation of immune 
cells, including macrophages[107], dendritic cells and 
B cells[108]. In LN, the released HMGB1 also 
contributes to the endocytosis of extracellular 
accumulated DNA and the activation of cyclic 
GMP-AMP synthase signaling pathway, and the 
subsequent secretion of IFN-I, leading to the expan-
sion of downstream inflammation[109]. In addition, 
HMGB1 also amplifies renal inflammation through 
the interaction with complement. In ANCA, HMGB1 
promoted C5a-mediated translocation of ANCA 
antigens and neutrophil activation, thereby aggrava-
ting renal involvement[110]. Importantly, HMGB1 
mediated inflammation is an important factor driving 
renal fibrosis[111]. The severity of renal fibrosis is 
positively correlated with the activation of HMGB1/ 
TLR2/TLR4 signaling[112]. Specifically, HMGB1 
promotes the expression of TGF-β and CTGF by 
activating multiple inflammatory pathways[113, 114], 
which in turn promotes fibroblast-to-myofibroblast 
transdifferentiation and EMT[115, 116], accelerating 
renal fibrosis. In addition, HMGB1 promote the 
recruitment and activation of macrophages in the 
early stages of UUO and induce macrophage-to- 
myofibroblast transition, thereby promoting renal 
fibrosis[117]. Interestingly, surfactant protein A, a 
novel protein factor, can block TGF-β1 expression and 
renal fibroblast transdifferentiation by binding 
HMGB1, thereby improving renal fibrosis[115]. 
Therefore, targeted inhibition of HMGB1 may be a 
good strategy for improving renal fibrosis. 

4.3 AKI-to-CKD transition 
AKI leads to a significantly higher risk of CKD 

and ESRD, as well as higher mortality[118]. Therefore, 
preventing the transition from AKI to CKD is 
essential. Maladaptive repair and increased 
irreversible renal fibrosis after AKI are the main 
causes of CKD[119], including tubular epithelial cell 
injury, endothelial dysfunction, microvascular 
rarefaction, and inflammatory progression. Recent 
evidence suggests the significant role of HMGB1 in 
the AKI-to-CKD transition. HMGB1 is a driver of 
necroinflammation in AKI. Although neutralizing 
extracellular HMGB1 is beneficial for renal protection, 
HMGB1 knockdown provides additional renal 
protection, indicating that intracellular HMGB1 has 
an extracellular-independent effect[51]. Further 
studies have shown that intracellular HMGB1 reduces 

the resistance of renal tubular cells to oxidative 
stress[51]. The inhibition or deletion of intracellular 
HMGB1 promotes the proliferation and regeneration 
of injured renal tubular epithelial cells and reduces 
renal interstitial matrix deposition and neutrophil 
gelatinase-associated lipocalin expression, thereby 
improving the AKI-to-CKD transition[51]. Therefore, 
intracellular HMGB1 may be a potential target for 
enhancing kidney regeneration and improving the 
long-term prognosis of AKI. 

4.4 Renal aging 
Kidney aging increases vulnerability to disease. 

At the cellular level, senescence causes cells to be in a 
permanent and irreversible cell cycle arrest and 
secrete a series of proinflammatory cytokines and 
growth factors, known as the SASP[120]. In a 
D-galactose-induced age-related renal injury model, 
HMGB1 expression was significantly increased, 
accompanied by enhanced oxidative DNA damage 
and renal cell apoptosis[121]. HMGB1, through the 
NF-κB signaling pathway activation, promotes the 
crosstalk between the high expression of 
inflammatory factors and premature senescence of 
renal cells to play its role in renal injury[122, 123]. A 
recent study reported that nuclear HMGB1 directly 
binds to topologically associated domains or RNA to 
regulate proliferation or senescence [124]. In addition, 
HMGB1 consolidates DNA durability by increasing 
gaps in DNA, leading to DNA protection and 
improved cellular senescence[125]. 

4.5 Vascular calcification in CKD 
Vascular calcification (VC) is an important factor 

contributing to CVDs-related morbidity and mortality 
in CKD[126]. In CKD, the accumulation of uremic 
toxins, oxidative stress, and chronic inflammation 
induces an imbalance in calcium and phosphate 
homeostasis and the transformation of vascular 
smooth muscle cells into chondrocytes or osteoblast- 
like cells, ultimately leading to VC[127]. HMGB1 
might plausibly play a crucial role in VC in CKD. On 
the one hand, HMGB1 promotes osteoblastic migra-
tion and differentiation by activating RAGE/TRL4 
signaling pathway[128, 129]. On the other hand, 
HMGB1 induces calcium deposition by regulating the 
expression of bone morphogenetic proteins[130]. In 
addition, HMGB1 reportedly initiates the minerali-
zation process by promoting the secretion of 
extracellular matrix vesicles by macrophages, leading 
to shifted pathological mineralization[131]. Interest-
ingly, the expression of osteopontin proteins and 
mineral particles promotes the cytoplasmic transloca-
tion and secretion of HMGB1[132, 133]. In a 5/6 
nephrectomy-induced CKD model, a high-phosphate 
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diet triggered inflammatory aortic calcification by 
promoting the nuclear-cytoplasmic translocation of 
HMGB1 in aortic tissue and inducing the expression 
of Runx2, osteopontin, and Msx2[134]. In addition, 
VC is also associated with the activation of 
Wnt/β-catenin pathway. HMGB1 promotes VC by 
activating the β-catenin pathway, upregulating 
Runx2, and downregulating Klotho in CKD[91]. Bone 
marrow mesenchymal stem cell-derived exosomes 
improve aortic calcification by promoting SIRT6 
expression and reducing HMGB1 cytoplasmic 
translocation via deacetylation[134]. In addition, 
lethal giant larvae 1, a key regulator of cell polarity, 
can also inhibits calcification by binding to HMGB1 
and promoting its degradation through the lysosomal 
pathway[135]. 

4.6 Renal replacement therapy 
Renal replacement therapy or kidney transplan-

tation is the cornerstone of patient with ESRD 
treatment. HMGB1 is a late inflammatory mediator in 
CKD. HMGB1 levels are significantly elevated in 
patients undergoing continuous ambulatory perito-
neal dialysis (CAPD) and are associated with 
inflammation and malnutrition[136]. Released 
HMGB1 mediates peritoneal fibrosis during 
peritoneal dialysis (PD) treatment by promoting 
MCP-1 and IL-8 production[137]. Serum HMGB1 
levels were significantly higher in patients 
undergoing hemodialysis than in patients with PD. Of 
note, HMGB1 levels decrease significantly with 
dialysis treatment[138]. Interestingly, patients with 
higher HMGB1 levels face more complications than 
those with lower HMGB1 levels despite no difference 
in terms of survival[138]. HMGB1 can be cleared by 
hemofiltration and hemodialysis using super-high- 
flux or high-cutoff membranes[139]. Therefore, the 
targeted clearance of HMGB1 by in vitro blood 
purification might effectively improve the clinical 
outcomes of critically ill patients, including 
ESRD[140]. 

5. HMGB1 antagonists of potential 
clinical interest in CKD 

At present, several strategies have been shown to 
successfully inhibit HMGB1-dependent diseases, 
including inhibiting HMGB1 expression and release, 
as well as blocking HMGB1-related signaling 
(HMGB1/TLR4 or HMGB1/RAGE pathway) (Table 
3)[7]. Targeted HMGB1 therapy has been widely 
studied and applied to many diseases. In CKD, Ethyl 
pyruvate (EP), a well-established and potent HMGB1 
inhibitor, selectively inhibits HMGB1 translocation 
from the nucleus, which inhibits its function in the 
cytosol and the active secretion of HMGB1 upon cell 

activation[141]. EP ameliorated albuminuria and 
glomerular injury in an STZ-induced DKD rat model 
by inhibiting HMGB1[142] and alleviated CaCl2- 
induced renal tubular cell injury by downregulating 
the expression of inflammatory and autophagic 
proteins[143]. Glycyrrhizic acid (Gly) was the first 
natural HMGB1 inhibitor to be discovered. Gly 
induces conformational changes that interfere with 
the DNA-binding ability of HMGB1 in the nucleus, 
HMGB1 phosphorylation in the cytosol, and the 
binding ability of HMGB1 receptors in the 
extracellular space[144]. Gly ameliorates proteinuria, 
pathological renal injury, and disease progression in 
DKD rats by improving renal inflammation and ROS 
production by inhibiting HMGB1[145-147]. Gly can 
also prevent tacrolimus-induced renal injury by 
improving lysosomal function and regulating 
autophagy[148]. Many other natural products, such as 
Korea red ginseng[121], Bupleurum polysac-
charides[149], Dioscin[150, 151], Plantago asiatica 
L[152], Isomangiferin[153], Troxerutin[154], and 
Ellagic acid[155], have been found to have similar 
therapeutic effects on CKD. 

Anti-HMGB1 antibodies have also been shown 
to fully inhibit the increase in complement deposition 
and albuminuria in MRL/lpr lupus-prone mice by 
inhibiting neutrophil recruitment and NETs[156, 157]. 
Anti-HMGB1 antibody administration inhibits NF-κB 
expression by blocking the activation of the TLR4 
pathway, thereby improving tubulointerstitial 
fibrosis, improving serum creatinine and 24-hour 
albuminuria, reducing creatinine clearance associated 
with nephrotoxicity, and preventing calcineurin 
inhibitor-induced nephrotoxicity, which is beneficial 
for improving the allograft survival rate of renal 
transplant recipients[158]. The supra-physiological 
production of endogenous secretory RAGE or 
administration of the HMGB1 A-box also improved 
albuminuria, glomerular injury, interstitial fibrosis, 
and renal inflammation in DKD mice[159]. 

In addition, some drugs that have proven 
effective in treating CKD were found to be associated 
with HMGB1 inhibition. For instance, the 
renoprotective effect of empagliflozin alleviated renal 
inflammation and apoptosis and was associated with 
reduced levels of HMGB1, RAGE, and TLR4[160]. The 
renoprotective effect of dapagliflozin is related to the 
blocking of the renal HMGB1 feedback loop[161]. 
Dapagliflozin alleviates renal tubular injury, 
improves inflammation and oxidative stress[162], and 
reverses podocyte loss and fibrosis by restoring renal 
autophagy by inhibiting HMGB1 in DKD[163]. 
Simvastatin ameliorated pathological renal injury by 
inhibiting HMGB1 expression in the kidneys of LN 
mice[164].  
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Table 3. Therapeutic strategies targeting HMGB1 in CKD 

HMGB1 ancts Experimental models Mechanism Effect on CKD References 
Ethyl pyruvate STZ-induced DKD; CaCl2-induced HK-2 Inhibit HMGB1 phosphorylation and 

release; Inhibit HMGB1/TLR4/NF-κB 
Meliorate albuminuria and glomerular injury; 
prevent AKI-CKD transition 

[51, 142, 
143] 

Glycyrrhizic acid STZ-induced DKD; Zucker diabetic fatty 
rat 

Inhibit HMGB1/RAGE/TLR4; Inhibit 
HMGB1/TLR4/NF-κB 

Improve renal injury and inflammatory 
responses 

[145, 146] 

Grape seed 
proanthocyanidin 
extract 

UUO Suppress HMGB1/TLR4/p65/TGF-β1 Alleviates renal fibrosis [61] 

Korea red ginseng HFD and D-galactose-induced 
aging-related renal injury 

Reduce extracellular HMGB1 Restore aging-related renal injury [121] 

Bupleurum 
polysaccharides 

STZ-induced DKD Interrupt HMGB1/TLR4 Reduce renal inflammation, fibrosis, serum 
creatinine level and urinary albumin excretion 
rate 

[149] 

Dioscin ADR-induced renal injury; 
fructose-induced renal damage 

Inhibit HMGB1/NF-κB Reduce renal oxidative stress and inflammation; 
inhibit renal fibrosis 

[150, 151], 

Plantago asiatica L puromycin aminonucleoside-induced 
renal injury 

Inhibit HMGB1 Suppress inflammation and apoptosis [152] 

Isomangiferin db/db mice Inhibit HMGB1/NLRP3/NF-κB Inhibit renal inflammation [153] 
Troxerutin methotrexate-induced nephrotoxicity Inhibit HMGB1/RAGE/NF-κB Inhibit inflammation and apoptosis, and activate 

of autophagy 
[154] 

Ellagic acid STZ-induced DKD Inhibit HMGB1/TLR4/NF-кB Ameliorate oxidative renal injury [155] 
Anti-HMGB1 antibody MRL/lpr lupus-prone mice; BXSB mice; 

cyclosporine-induced nephrotoxicity 
suppress HMGB1 translocation from 
nuclei; Inhibit HMGB1/TLR4 

Against albuminuria; attenuate proteinuria, 
glomerulonephritis, circulating anti-dsDNA and 
immune complex deposition. 

[156-158] 

esRAGE or HMGB1 A 
Box 

STZ-induced DKD Block the interaction between HMGB1 
and its receptors 

Reduce albuminuria, glomerular injuries, 
interstitial fibrosis, and renal inflammation 

[159] 

Dapagliflozin STZ-induced DKD; HG-induced HK-2; 
high fat diet-induced DKD 

Inhibit HMGB1/TLR2/4/NF-κB; Inhibit 
HMGB1‑RAGE-NF‑κB 

Suppress the self-perpetuating cycle of 
inflammation and diabetic kidney injury 

[161-163] 

Empagliflozin STZ-induced DKD attenuate renal HMGB1 levels Alleviate renal inflammation and oxidative stress [160] 
Simvastatin BSXSB mice Reduce the expression of HMGB1 and 

TLR4 
inhibit the autoimmune response [164] 

Nano selenium and 
sildenafil 

STZ-induced DKD Inhibit HMGB1/NF-κB Improve kidney function, and histopathological 
changes 

[165] 

HG: high glucose; STZ: Streptozocin; HFD: High fat diet; ADR: adriamycin; UUO: unilateral ureteral obstruction. 

 
Interestingly, with the development of 

computational tools, new HMGB1 inhibitors (such as 
nano selenium and sildenafil), have shown 
satisfactory effects in improving renal function and 
pathological damage[165]. Based on the above 
evidence, HMGB1 may be an attractive target for the 
treatment of CKD. Nevertheless, more efficient and 
safer HMGB1 inhibition strategies are urgently 
required to improve the therapeutic effects on CKD. 

6. Conclusions and perspectives 
HMGB1 plays multiple roles in the occurrence 

and progression of CKD depending on its 
localization, context, post-translational modification, 
and receptor binding. HMGB1 is expressed and 
secreted by stressed intrinsic renal cells and mediates 
renal fibrosis, aging, AKI-to-CKD transition, and 
cardiovascular complications by amplifying 
inflammation through the regulation of autophagy- 
and cell death-related pathways, ultimately affecting 
renal outcomes. In addition, as a biomarker, HMGB1 
levels also significantly correlate with the progression 
and prognosis of CKD. Pharmacological inhibition 
and deletion of HMGB1 significantly improve various 
kidney disease phenotypes. Therefore, targeting 
HMGB1 is an attractive therapeutic strategy for CKD 
treatment. However, applying HMGB1 as a 
therapeutic target in CKD remains challenging. The 

first issue is the accurate measurement of HMGB1 
levels. Studies have confirmed that HMGB1 is 
produced in serum during blood clots [166]. 
Therefore, whether plasma, serum, or urine is the best 
sample to predict and evaluate CKD warrants further 
study. In addition, studies have found that HMGB1 
binds to several proteins, including IgG1, in the serum 
to form a complex that interferes with the enzyme 
linked immunosorbent assay system detection[167]. 
Therefore, it is important to clarify whether western 
blot, ELISA, liquid chromatography and tandem mass 
spectrometry, and other alternative methods can 
accurately detect HMGB1. Another critical issue that 
needs to be addressed is the heterogeneity in HMGB1 
expression. Studies have shown sex differences in 
HMGB1 expression in kidney injury and that HMGB1 
increases more in male rats upon kidney injury[168]. 
In addition, HMGB1 expression is tissue-specific[169]. 
Therefore, clarifying the specific factors that affect the 
differences in HMGB1 expression might help the 
development of targeted treatments for HMGB1. 
Finally, the decrease in renal clearance does not fully 
explain the increase in circulating HMGB1. Although 
splenectomy transiently reduced circulating HMGB1 
levels and improved CKD. However, the source of 
HMGB1 in CKD remains to be elucidated[170]. 
Furthermore, at the cellular level, the dual localization 
of HMGB1 appears to be functionally complementary. 
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How damaged renal intrinsic cells balance the nuclear 
and extracellular functions of HMGB1 remains 
unclear, especially, what role does intracellular 
HMGB1 play, and whether extracellular HMGB1 is 
the cause or result of kidney injury, which is the 
premise for identifying highly effective HMGB1 
inhibitors for CKD. 
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