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Abstract 

A growing number of studies have revealed an association between proteasome activator complex 
subunit 2 (PSME2) and the progression of various forms of cancer. However, the effect of PSME2 on 
osteosarcoma progression is unknown. Pan-cancer analyses focused on the immunological activity and 
prognostic relevance of PSME2 have yet to be conducted. The Cancer Genome Atlas and 
Genome-Tissue Expression databases were leveraged to evaluate PSME2 expression and activity across 
33 cancer types. Significant PSME2 dysregulation was noted in a wide range of cancer types and this gene 
was found to offer significant diagnostic and prognostic utility in most analyzed cancers. From a 
mechanistic perspective, PSME2 expression levels were correlated with DNA methylation, DNA repair, 
genomic instability, and TME scores in multiple cancer types. PSME2 was subsequently established as a 
pan-cancer biomarker of M1 macrophage infiltration based on a combination of bulk, single-cell, and 
spatial transcriptomic data and confirmatory fluorescent staining results. In osteosarcoma cells, 
overexpressing PSME2 significantly suppressed tumor proliferative, migratory, and invasive activity. 
Screening efforts also successfully identified the PSME2-activating drug irinotecan, which can 
synergistically promote the death of osteosarcoma cells when combined with the chemotherapeutic drug 
paclitaxel. As a biomarker of M1 macrophage infiltration, PSME2 expression levels may offer insight into 
tumor development and progression for a wide range of cancers including osteosarcoma, emphasizing its 
potential utility as a prognostic and therapeutic target worthy of further study. 
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Introduction 
As a key regulator of 20S proteasomal activity, 

proteasome activator 28 (PA28) plays vital roles in the 
control of transcriptional activity, antigen presenta-
tion, cell cycle progression, learning, memory, and the 
suppression of depressive behaviors [1-3]. PA28 is 

composed of three protein subunits known as PA28α, 
PA28β (also known as PSME2), and PA28γ. In healthy 
individuals, PSME2 is reportedly inactive [4]. 
However, recent evidence suggests that PSME2 plays 
a valuable role in regulating tumor development and 
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the presentation of tumor-derived antigens. When 
overexpressed, PSME2 is capable of suppressing the 
tumorigenic activity of both the TE-1 esophageal 
squamous cell carcinoma cell line as well as the 
MKN45 gastric adenocarcinoma (GA) cell line, 
consistent with its potential relevance as a therapeutic 
target in a range of cancers [5-7]. Functionally, PSME2 
is capable of promoting the presentation of 
tumor-derived antigens on MHC class I molecules [8], 
thereby facilitating, for example, the presentation of 
the TRP2 360-368 epitope in melanoma to enable the 
activation of cytotoxic T lymphocytes (CTLs) reactive 
to this antigenic moiety [9]. 

While the above data provide support for a 
potential model in which PSME2 may influence a 
range of cancer types, systematic pan-cancer research 
evaluating the roles played by PSME2 is currently 
lacking [5-7]. Research focused on only a single cancer 
type has the potential to overlook the mechanistic 
importance of a given target gene owing to the lack of 
a corresponding global perspective. There is thus a 
pressing need to examine the important roles that the 
expression of PSME2 plays in many different forms of 
cancer in order to inform future experimental and 
clinical research efforts.  

Here, a poly-omics pan-cancer study of PSME2 
was conducted using an integrated series of tools and 
datasets corresponding to different cancers and 
normal tissues in an effort to clarify the relationships 
between this gene, clinical characteristics, and 
multi-omic heterogeneity. In particular, these 
analyses centered around DNA repair, DNA damage, 
and the induction of cancer-related immune 
responses, with subsequent confirmation of the 
identification of PSME2 as a biomarker of M1 
macrophage infiltration through fluorescent staining. 
The effects of PSME2 on the malignant phenotype of 
osteosarcoma were verified by in vivo and in vitro 
experiments. Screening efforts were also used to 
identify PSME2-activating drugs with potential value 
for use in specific forms of cancer. An overview of the 
experimental approaches employed herein is 
provided in Figure 1.  

Materials and Methods 
Pan-Cancer Data Collection and Processing 

The UCSC Xena platform was used for accessing 
The Cancer Genome Atlas (TCGA) and 
Genotype-Tissue Expression (GTEx) databases 
pertaining to pan-cancer PSME2 expression levels and 
corresponding clinical characteristics [10]. A dataset 
comprising long-read transcriptome sequencing of 
osteosarcoma (GSE218035) was obtained from the 
Gene Expression Omnibus. PSME2 expression in 

different cancer cell lines was analyzed using the 
Cancer Cell Line Encyclopedia (CCLE) database [11]. 
The cBioPortal for Cancer Genomics database was 
used as a source of single-nucleotide variation (SNV) 
data across cancer types and for merged HM27 and 
HM450 methylation data [12]. A log2 (transcripts per 
million (TPM)+1) transformation approach was used 
for the normalization of transcriptional data. For 
details regarding the naming and abbreviations of the 
33 tumor types included in this study, see 
Supplementary Table 1. PSME2 protein FASTA 
sequences were obtained from the NCBI protein 
database. 

Pan-Cancer Analyses of Differential PSME2 
Expression 

Data from the TCGA and GTEx databases were 
merged to compare PSME2 mRNA levels between 
tumors and normal tissues for 33 cancer types. The R 
‘ggplot2’ package was used for analyses of differential 
gene expression. Boxplots were used to present 
differences in expression levels across cancer subtypes 
or stages. PSME2 protein levels were compared 
between tumors and normal tissues with Clinical 
Proteomic Tumor Analysis Consortium data derived 
from the UALCAN portal [13]. 

Diagnostic and Prognostic Analysis 
The R ‘pROC’ package was used to generate 

receiver operating characteristic (ROC) curves for 
cancers of interest, and survival outcomes were 
compared between individuals expressing low and 
high levels of PSME2 with Kaplan-Meier curves, 
stratifying patients according to median PSME2 
expression. The R ‘survival’ and ‘survminer’ packages 
were used for survival curve generation. Univariate 
Cox regression analyses performed in the R ‘survival’ 
and ‘forestplot’ packages were then used to evaluate 
the prognostic relevance of PSME2 expression as a 
predictor of overall survival (OS), disease-specific 
survival (DSS), progression-free interval (PFI), and 
disease-free interval (DFI). 

Genomic Alteration and Mutational Burden 
Analyses 

Pan-cancer analyses of the frequencies of 
genomic mutations, amplifications, and deep 
deletions were conducted with the cBioPortal Cancer 
Type Summary module [14]. Processed SNV data 
were evaluated with reference to PSME2 protein 
domains identified with the R ‘maftools’ package to 
highlight the mutational landscape of this gene in 
pan-cancer datasets [15]. The Tumor Immune 
Dysfunction and Exclusion (TIDE) [16] Copy_ 
Number module was used to obtain Kaplan-Meier 
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curves for use in evaluating the prognostic relevance 
of PSME2 copy number variations (CNVs). The R 
‘maftools’ package was used to assess tumor 
mutational burden (TMB), while aneuploidy, 
neoantigen, homologous recombination deficiency 

(HRD), and microsatellite instability (MSI)-related 
data were obtained from prior reports [17], with 
correlations between these characteristics and PSME2 
expression then being assessed.  

 
 

 
Figure 1. Study flowchart.  
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DNA Mismatch Repair, Stemness, and 
Epigenetic Modification Analyses 

Visual analyses of the relationship between the 
expression of PSME2, five mismatch repair (MMR) 
genes [18], and four DNA methyltransferases 
(DNMTs) [19] were conducted. In addition, the 
ARIEL3 clinical trial [20] was used to retrieve 30 
homologous recombination repair (HRR)-related 
genes that were evaluated for correlations with 
PSME2 mRNA levels using the GEPIA2 tool [21]. 
Differentially methylated probes-based stemness 
index (DMPsi) values for individual cancer types 
were derived from a prior report [22], and the 
associations between these values and PSME2 
expression at the mRNA level were also assessed. 
Associations between PSME2 and the expression of 44 
N1‐methyladenosine (m1A), 5‐methylcytosine (m5C), 
and N6‐methyladenosine (m6A) modifying genes 
were evaluated with heat maps [23]. 

PSME2 DNA Methylation Analyses 
Using methylation data derived from cBioPortal, 

correlations between the methylation of PSME2 and 
patient OS, DSS, DFI, and PFI were assessed with the 
R ‘survival’ package. The R ‘ggpubr’ package was 
used to facilitate the visual examination of the link 
between PSME2 promote methylation and the 
expression of this gene at the mRNA level. The TIDE 
Methylation module was used to assess the 
relationship between the methylation of the PSME2 
promoter and CTLs.  

PSME2 Alternative Splicing Analyses  
Clinically relevant PSME2 alternative splicing 

(AS) was examined with the OncoSplicing server [24] 
using the ClinicalAS tool, searching for relevant 
PSME2 AS events in the SpliceSeq and SplAdder 
projects. The percent spliced-in (PSI) data for TCGA 
cancer and GTEx tissue data were displayed with 
PanPlot, and PSI differences were compared between 
tumors and corresponding normal tissues for AS 
events present in >3 cancer types.  

Functional Enrichment and Interaction 
Analyses 

The STRING [25] database was used to construct 
a protein-protein interaction network for PSME2 
based. UALCAN was used to explore pan-cancer 
pathway-level somatic alterations for key pathways, 
while GEPIA2 was used to evaluate correlative 
relationships between PSME2 expression levels and 
pathway-related signatures [26]. The GEPIA2 Similar 
Gene Detection function was used to select the top 100 
genes co-expressed with PSME2, and these genes 
were used for Gene Ontology (GO) enrichment 

analyses using the R ‘clusterProfiler’ package with the 
use of the R ‘org.Hs.eg.db’ package to obtain GO 
annotations [27]. A false discovery rate corrected P < 
0.05 served as the significance threshold. Gene set 
enrichment analysis (GSEA) results were also used to 
quantitatively assess PSME2 functional enrichment 
[28]. Tumor samples were separated into groups 
exhibiting low and high levels of PSME2 expression 
based on median expression levels, and a hallmark 
pathway GSEA approach was implemented by 
downloading the h.all.v7.4.symbols.gmt gene set from 
the Molecular Signatures Database [29]. 

Pan-Cancer Analyses of the Immunological 
Roles of PSME2 

The ESTIMATE algorithm was used to compute 
Immune, Stromal, and ESTIMATE score values for 33 
cancer types [30]. Correlations between PSME2 and 
previously identified immune checkpoint markers 
were also examined at the mRNA level [31]. PSME2 
expression was also evaluated in tumors classified 
into 6 immunological subtypes (C1: Wound healing; 
C2: IFN-γ dominant; C3: Inflammatory; C4: 
Lymphocyte-depleted; C5: Immunologically quiet; 
C6: TGF-β dominant) using the TISIDB subtype 
module [32]. Correlative relationships between 
PSME2 and immune-associated genes (MHCs, 
chemokine receptors, chemokines, immunosup-
pressive genes, and immunostimulatory genes) were 
examined in a range of cancer types. The effects of 
cytokine treatment on PSME2 expression levels were 
assessed with the online Tumor Immune Syngeneic 
MOuse tool (TISMO) [33], enabling the evaluating of 
samples exposed to cytokine, anti-CLTA4, or 
anti-PD-L1 treatment.  

The xCell, MCPCOUNTER, and CIBERSORT 
algorithms were used to quantify the relative 
proportions of infiltrating immune cells [34-36]. In 
addition, data on immune cell infiltration derived 
from single-sample gene set enrichment analysis were 
obtained from the ImmuCellAI database [37]. 
Spearman's correlation coefficients were used to 
explore the association between PSME2 expression 
and the relative abundance of different types of 
infiltrating immune cells. The TIMER2.0 database was 
also used to explore the correlation between PSME2 
expression and macrophage infiltration [38]. Spatially 
resolved transcriptomic data available through the 
SpatialDB tool [39] were employed to examine spatial 
relationships pertaining to the expression of PSME2, 
the general macrophage marker CD68, and the M1 
macrophage marker TLR2 in breast cancer (BC) and 
melanoma. Single-cell-resolution analyses of PSME2 
in various cancers were performed with the Tumor 
Immune Single-cell Hub (TISCH) [15]. Correlations 
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between PSME2 and 14 functional states in cancers 
were assessed with single-cell sequencing data from 
the CancerSEA ‘correlation plot’ module [40]. 

PSME2-activating Drug Screening and 
Molecular Docking analyses 

The potential relevance of PSME2 to the 
treatment of BC, glioblastoma (GBM), and ovarian 
cancer (OV) was evaluated by comparing the 
expression of this gene between non-responders and 
responders when assessing therapy-associated 
survival outcomes with ROC plotter [41]. Potential 
PSME2-activating compounds were screened with the 
cMap ‘query’ tool [42], using the top 100 most highly 
upregulated and downregulated genes identified 
when comparing PSME2-high and PSME2-low 
groups (stratified according to median PSME2 
expression). The top 30 compounds were then plotted 
with a heatmap, and their mechanisms of action 
(MoA) were evaluated. The expression of PSME2 and 
concentrations associated with 50% growth inhibition 
(GI50) in various cell lines were then plotted for top 
compounds with the NCI Developmental 
Therapeutics Program COMPARE tool. PSME2 
protein homology modeling was conducted with the 
AlphaFold2 software [43], with SAVES v6.0 being 
used for rank_1 protein estimation and molecular 
docking analyses that were subsequently conducted 
with Discovery Studio v19.1.0. Following the 
automated preparation of PSME2 and candidate 
compounds of interest, binding sites and compound 
conformations were assessed, and LibDock was used 
for docking. Those sites exhibiting the highest 
LibDockScore values and molecular conformations 
were then selected for additional analyses of 3D 
binding pocket interactions and 2D intermolecular 
force distances. 

Experimental Methods 
The experimental methods are shown in 

Supplementary Material 2. 

Statistical Analysis 

R v4.2.1 was used for all statistical analyses. 
Results were compared between groups with 
one-way ANOVAs or Student’s t-tests. Kaplan-Meier 
curves and log-rank tests or Cox proportional hazard 
regression models were employed when conducting 
survival analyses. Pearson or Spearman correlation 
coefficient values were used to evaluate relationships 
between variables, with |r| = 0.3 being considered 
indicative of a relevant correlative relationship. 
Significant correlations between PSME2 and DNMT 
expression were considered present if correlations 

were significant for any 2 of the 4 analyzed DNMTs 
and none of the other DNMTs exhibited opposing 
statistical results. P < 0.05 was the cut-off threshold 
when defining significance (*P < 0.05, **P < 0.01, ***P 
< 0.001; ns: not significant). 

Results 
Pan-Cancer Analyses of PSME2 Expression 

The TCGA and GTEx databases were initially 
used to conduct a systematic pan-cancer analysis of 
the expression of PSME2 at the mRNA level. This 
approach revealed differential PSME2 expression in 
24 cancer types (Figure 2A, Figure S1A). 
Osteosarcoma tissues exhibited higher PSME2 
expression compared to adjacent normal tissues 
(Figure 2B). The relative PSME2 expression levels 
across different cell lines, obtained from CCLE data, 
are presented in Figure S1B. Data from the UALCAN 
database revealed protein-level PSME2 upregulation 
in COAD, OV, clear cell renal cell carcinoma, UCEC, 
LUAD, HNSC, and GBM, whereas the 
downregulation of this protein was evident in LIHC 
(Figure 2C). PSME2 expression was also evaluated in 
33 tumor types across a range of clinical stages, 
subtypes, and TNM stages (Figure S2). 

PSME2 Offers Diagnostic and Prognostic 
Utility in Different Cancers 

ROC curves suggested that PSME2 may offer 
utility as a diagnostic biomarker in certain cancers 
(Figure S3). The prognostic relevance of PSME2 as a 
predictor of prognostic outcomes including OSS, DSS, 
PFI, and DFI was then assessed for 33 tumor types in 
the TCGA database. Univariate Cox regression 
analyses indicated that PSME2 was significantly 
associated with poorer OS in KIRC, LAML, LGG, 
PAAD, and UVM, whereas it was a protective factor 
in BLCA, BRCA, MESO, OV, SKCM, and THCA 
(Figure 2D). PSME2 was also a risk factor significantly 
associated with worse DSS in KIRC, LGG, and THYM, 
while it was a protective factor in BRCA, OV, SKCM, 
STAD (Figure 2E). With respect to DFI, PSME2 was a 
risk factor in KIRP and PRAD whereas it was 
protective in BLCA and BRCA (Figure 2F). With 
respect to PFI, PSME2 was a risk factor in KIRC, KIRP, 
LGG, PRAD, THYM, and UVM, while it was 
protective in BLCA, BRCA, CESC, SKCM, and STAD 
(Figure 2G). Kaplan-Meier curves were also used to 
evaluate these four prognostic outcomes (Figure S4). 
Overall these results suggested that lower levels of 
PSME2 expression were generally related to worse 
prognostic outcomes in BLCA, BRCA, OV, SKCM, 
and THCA patients. 
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Figure 2. Pan-cancer analyses of PSME2 expression and prognostic relevance. (A) The TCGA and GTEx datasets were used for integrated analyses of PSME2 
expression in tumors and healthy tissues. (B) PSME2 mRNA expression in osteosarcoma compared with the adjacent normal tissues in the GSE218035 dataset. (C) UALCAN 
analyses of PSME2 protein levels in primary tumors and normal tissues. (D-G) Forest plots were used for pan-cancer analyses of PSME2 and OS (D), DSS (E), DFI (F), and PFI (G). 
*P < 0.05, **P < 0.01, ***P < 0.001; ns: not significant. Abbreviations: CPM, counts per million. 

 

Analyses of PSME2 Genomic Alterations and 
Genomic Instability 

Genomics strategies provide a powerful means 
of analyzing cancer [44]. To assess potential 
genome-level alterations in PSME2 in specific cancers, 
a pan-cancer analysis of PSME2 CNVs and SNVs was 
conducted. PSME2 amplification was primarily 
detected in BLCA, LUAD, ACC, SARC, UCS, LGG, 
LIHC, BRCA, and THCA, whereas deep deletions 
were common in STAD, and high rates of SNVs were 
evident in SKCM, UCEC, and KICH (Figures 3A, B). 

When TIDE analyses were conducted based on levels 
of these CNVs, patients with metastatic melanoma, 
GBM, and BRCA exhibiting high PSME2 CNV levels 
exhibited higher survival rates, whereas the opposite 
was true in papillary KIRC (Figure 3C). Correlations 
between PSME2 and TMB, MSI, HRD, aneuploidy, 
and neoantigens were also evaluated given the 
abundance of such mutations in tumors and their 
potential effects on prognostic and therapeutic 
outcomes [45, 46]. A positive correlation was detected 
between PSME2 and TMB in COAD, STAD, and UCS 
(Figure 3D), and between PSME2 and MSI in COAD 
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and DLBC (Figure 3E). PSME2 was negatively and 
positively correlated with HRD in UVM and ACC, 
respectively (Figure 3F). Similarly, a positive 
correlation was detected between PSME2 and 
aneuploidy in KICH whereas a negative correlative 
relationship was detected in OV and COAD (Figure 
3G). Tumor-specific neoantigens represent important 
targets for the induction of an antitumor immune 
response such that they are associated with prognostic 
outcomes for a range of cancers [47]. SNVs and 
insertion/deletion (indel) mutations were used to 
identify putative MHC-binding neoantigens capable 
of inducing an adaptive antitumor immune response 
[17]. The only correlation between PSME2 and 
neoantigens was with indel neoantigens in COAD 
(Figure 3H-3I). Overall these data suggest an 
important association between PSME2 and genomic 
instability. 

PSME2 Levels are Associated with DNA 
Repair, Methylation, and Cancer Cell 
Stem-like Characteristics  

The DNA damage response is a complex series 
of mechanisms responsible for maintaining the 
stability and integrity of the genome by detecting and 
eliminating abnormal sequences and structures 
within chromosomes [48]. Tumor cells develop 
mechanisms that enable them to evade certain 
therapeutic strategies by co-opting the MMR [49] and 
HRR [50] mechanisms, endowing these tumor cells 
with stem-like self-maintenance abilities [51]. As such, 
the associations between PSME2 expression levels 
and MMR-associated genes, HRR signatures, and 
stemness were next evaluated. A negative correlation 
was detected between PSME2 and the expression of a 
range of MMR genes in cancers including BLCA, 
BRCA, KICH, KIRC, KIRP, LIHC, OV, PRAD, SARC, 
SKCM, TGCT, THYM, and UCEC, with a particularly 
pronounced relationship in THCA (Figure 4A). A 
positive correlation was also evident between PSME2 
and HRR signatures in ACC, LGG, LUAD, PAAD, 
and UVM, whereas this correlation was negative in 
THYM (Figure 4B). PSME2 was additionally 
positively correlated with tumor stemness in CHOL 
(Figure 4C). These results thus suggest a role for 
PSME2 as a regulator of cancer progression through 
its ability to influence DNA damage repair.  

Epigenetic modifications also play an important 
role in shaping the onset and progression of cancers 
such that they are increasingly popular targets for 
researchers [52]. DNMTs are responsible for 
catalyzing DNA methylation, potentially modulating 
the proliferation, differentiation, survival, and cell 
cycle progression characteristics of tumor cells [53]. 
PSME2 expression was significantly negatively 

correlated with DNMT levels in UCS, THYM, TGCT, 
SARC, and OV, whereas the opposite was true in 
UVM, LGG, KIRP, KIRC, KICH, and ACC (Figure 
4D). Notably, we observed a negative correlation 
between PSME2 mRNA expression and methylation 
(Figure S5), and survival outcomes assessed by 
Kaplan-Meier curves showed that reduced 
methylation was predictive of shorter survival in 
ACC and PRAD (Figure S6A). Relationships between 
PSME2 promoter methylation and CTLs were also 
assessed with TIDE in DLBC, STAD, OV, CESC, 
LUAD, and triple-negative breast cancer (TNBC) 
(Figure S6B). Correlative relationships between the 
expression of PSME2 and RNA modulator genes were 
also examined (Figure 4E). Together, these analyses 
suggested a role for PSME2 in DNA methylation and 
mRNA modification in a range of cancer types. 

Alternative PSME2 Splicing is Associated with 
Survival Outcomes 

Specific changes in gene splicing can occur in 
tumor cells that can support disease progression, and 
the identification of these AS events has the potential 
to support the prognostic and diagnostic evaluation of 
patients [54]. Using OncoSplicing, 51 clinically 
relevant PSME2 AS events were detected (Table S2), 
including PSME2_intron retention_40286 in the 
TCGA SpIAdderSeq database and the PSME2_ 
AA_26864 event in the TCGA SpliceSeq database. 
Pan-cancer analysis results showing the PSI of 
PSME2_intron retention_40286 event are provided in 
Figure 5A. Relative to normal samples, a higher PSI 
was evident in CHOL, HNSC, KIRC, LIHC, LUAD, 
and STAD, whereas the opposite was true in BRCA, 
KICH, THYM, and UCEC. Figure 5B summarizes the 
statistical results of PSI differences between tumor 
and normal/adjacent tissues and the relationship 
between them and the prognosis. For further details 
regarding the PSME2_AA_26864 event, see Figure 
S7A-S7B. Together these results suggest that PSME2 
AS events may have important implications for the 
progression of many cancers.  

PSME2 is Linked to Immune Activity and is 
Involved in Multiple Oncogenic Pathways 

To gain insight into the functions of PSME2 in 
tumor cells, a functional enrichment analysis was 
employed. Using the STRING tool, 10 proteins with 
experimentally validated interactions with PSME2 
were identified (Figure S7C). GEPIA2 data were then 
used to identify the top 100 genes co-expressed with 
PSME2, and GO enrichment analyses of these genes 
highlighted a close association between PSME2 and 
various immune-related activities (Figure S7D, Table 
S3).  
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Figure 3. PSME2 expression is correlated with genomic instability. (A) Pan-cancer analyses of genomic changes in PSME2 in the TCGA database were conducted, 
including analyses of mutations, amplifications, and deep deletions. (B) The pan-cancer PSME2 SNV landscape, including missense, frameshift deletion, and splice site mutations. 
(C) The prognostic relevance of PSME2 CNVs and survival in four cancers was assessed using Kaplan-Meier curves generated with the TIDE tool. (D, E) Radar charts representing 
pan-cancer analyses of the link between PSME2 and both TMB (D) and MSI (E). The red font indicates a correlation coefficient of ≥0.3 and p-value < 0.05 between PSME2 
expression and TMB. Blue font indicates a correlation coefficient of ≥0.3 and p-value <0.05 between PSME2 expression and MSI. (F-I) Lollipop charts were used to visualize 
correlations between PSME2 levels and HRD (F), aneuploidy (G), SNV.neoantigens (H), and Indel.neoantigens (I), with dot sizes being proportional to sample sizes and dot color 
being proportional to p-values. Cancers with p-values <0.05 and |a correlation coefficient| ≥ 0.3 are shown in red bold type, with regular red font indicating that the cancer meets 
the p-value < 0.05 threshold. 
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Figure 4. PSME2 is associated with DNA repair, epigenetic modifications, and stemness. (A) Associations between PSME2 and five MMR genes across cancer types 
are presented in a heatmap. (B) Correlation scatter plots for 12 cancers highlighting correlations between a 30-gene HRR signature and the levels of PSME2. (C) Correlations 
between PSME2 levels and stemness are presented with a lollipop chart in which dot sizes are proportional to sample size and colors are indicative of p-values. (D) Correlations 
between PSME2 and four DNMTS are presented in a heatmap. (E) Correlations between pan-cancer RNA modulations and PSME2 levels are presented in a heatmap. *P < 0.05, 
**P < 0.01, ***P < 0.001.  
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Figure 5. Alternative PSME2 splicing events and associations with immune and oncogenic pathways. (A) Reads-in, reads-out, and PSI values PSME2_ 
.Intron_Retention_40286 in pan-cancers, adjacent samples, and healthy tissue samples. Colored labels correspond to tumors and matching adjacent tissues, while non-tumor 
tissues are labeled in black. (B) PSI differences when comparing tumors and corresponding healthy or adjacent tissues and the association between PSME2_ 
Intron_Retention_40286 events and prognosis. *P < 0.05, **P < 0.01, ***P < 0.001. (C) Pan-cancer HALLMARK GSEA enrichment plots. For these analyses, samples were 
stratified according to median PSME2 expression. (D) Box plots comparing the expression of PSME2 in 6 cancers based on the presence or absence of somatic alterations in the 
indicated pathways as assessed with the UALCAN tool.  

 



Int. J. Biol. Sci. 2024, Vol. 20 
 

 
https://www.ijbs.com 

1462 

HALLMARK GSEA results further confirmed a 
close link between PSME2 and both immunological 
activity and cell cycle progression (Figure 5C, Table 
S4). It was subsequently observed that PSME2 
expression was increased in patients with UCEC 
showing somatic alterations in chromatin modifi-
cations, HIPPO and RTK pathways, and SWI/SNF 
complex status, while PSME2 expression was 
decreased in HNSC patients with somatic alterations 
in chromatin modifications, the HIPPO pathway, or 
SWI/SNF complex status (Figure 5D). The 
correlations between PSME2 expression and these 
pathway-related signatures were also explored [26], 
revealing a consistent correlation between PSME2 and 
these signatures (Figure S8, Table S5). The results 
indicated the potential involvement of PSME2 in 
multiple oncogenic pathways in a variety of cancers. 

PSME2 is Associated with Immune Cell 
Infiltration and Cytokine-Related Activity in 
Tumors 

The ESTIMATE algorithm was next 
implemented to evaluate the association between 
PSME2 and immunological characteristics for 33 
tumor types. A positive correlation between 
ESTIMATE and Immune score values was evident for 
most cancer types, although the opposite was true for 
ACC (Figure 6A), with Figure S9A presenting the top 
6 cancers exhibiting the strongest correlations. 
Differential PSME2 expression in various 
immunological cancer subtypes was further assessed 
with TISIDB, revealing a significant relationship 
between PSME2 levels and immune subtypes for 23 
cancer types (Figure 5B, Figure S9B). Specifically, 
PSME2 upregulation was evident in BRCA, LUAD, 
HNSC, LUSC, and STAD tumors of the C2 subtype, 
suggesting a functional relationship between this 
gene and IFN-γ signaling activity. A pan-cancer 
analysis of associations between PSME2 and 
immune-related genes was also conducted (Figure 
S10), and TISMO was used to compare the expression 
of PSME2 between cancer cell lines treated in vitro 
with cytokines (Figure S11A) and in samples before 
and after in vivo anti-PD-1 and anti-CTLA4 treatment 
(Figure S11B). Higher PSME2 expression levels were 
evident in samples in the responder group following 
cytokine, anti-PD1, and anti-CTLA4 treatment. 

PSME2 is a Biomarker of Infiltration by M1 
Macrophages 

To better understand the association between 
PSME2 expression and cancer-related immune 
activity, correlations between PSME2 expression and 
the infiltration of various immune cell types were 

assessed (Figure S12, Figure S13A). TIMER2.0 
analyses revealed a positive correlation between M1 
macrophage infiltration and PSME2 expression levels 
across cancers (Figure 6C), while a low correlation 
was found with PSME2 promoter methylation (Figure 
S13B, Table S6). Spatial transcriptomic data from 
Spatial DB further confirmed that PSME2 expression 
patterns overlapped substantially with those of the 
macrophage marker CD68 and the M1 macrophage 
marker TLR2 in BRCA and melanoma (Figure 6D, 
Figure S14A), implied potential co-localization of 
these genes. Single-cell transcriptional data from 
TISCH additionally confirmed the expression of 
PSME2 in M1 macrophages and malignant tumor cells 
in most analyzed cancer types (Figure 6E).  

To experimentally verify these results, 
fluorescent staining was conducted for these different 
marker proteins in a range of paraffin-embedded 
cancer sections. Clear PSME2 and TLR2 co-expression 
was evident in COAD, GBM, LIHC, PAAD, 
osteosarcoma, and melanoma (Figure 7A-7B). The 
bulk, spatial, single-cell transcriptional data and the 
fluorescence staining results above highlight the close 
relationship between PSME2 expression and M1 
macrophages, suggesting that PSME2 may be a 
pan-cancer biomarker of M1 macrophage infiltration.  

CancerSEA single-cell sequencing data were also 
used to assess correlative relationships between 
PSME2 expression and 14 cancer functional states, 
revealing positive associations between PSME2 and 
the cell cycle, DNA repair, and DNA damage in 
non-small cell lung cancer (Figure S14B, Table S7), 
highlighting these as possible processes through 
which PSME2 shapes oncogenic progression. 

PSME2 Suppresses Osteosarcoma Cell 
Growth and Malignancy 

Next, the ability of PSME2 to influence the 
malignant characteristics of osteosarcoma cells was 
assessed to expand upon the above findings using the 
U2OS and HOS cell lines. Both qPCR and Western 
blotting were used to confirm successful PSME2 
overexpression in these cells (Figure 7C). This 
overexpression markedly suppressed the proliferative 
activity of both of these cell lines (Figure 7D-G, K), 
while also inhibiting their ability to engage in 
migratory and invasive behaviors in wound healing 
and Transwell assays (Figure 7H-J). In vivo, PSME2 
overexpression also suppressed subcutaneous 
xenograft tumor growth relative to control tumors 
(Figure 7L-O). Together, these results support the 
ability of PSME2 to significantly suppress osteo-
sarcoma tumor proliferative, migratory, and invasive 
activity.  
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Figure 6. PSME2 is a pan-cancer biomarker of M1 macrophage infiltration. (A) Correlations between PSME2 levels and ESTIMATE, Immune, and Stromal scores were 
presented using a heatmap. (B) Correlations between PSME2 and immune subtypes were assessed with the TSIDB tool. The red dashed line represents p-value = 0.05. (C) 
TIMER2.0 determined the correlations between PSME2 expression and macrophage infiltration levels in pan-cancer using multiple algorithms. (D) Spatial transcriptomic sections 
were analyzed to assess the overlapping patterns of PSME2, CD68, and TLR2 expression. Dots are colored based on the expression levels for the indicated genes. (E) The TISCH 
tool was used to assess PSME2 expression levels in cancer-derived single-cell clusters. 
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Figure 7. Evaluation of the ability of PSME2 to regulate OS tumor cell malignancy. (A) Images of tumor sections stained for TLR2 (red) or PSME2 (green), with DAPI 
(blue) counterstaining. The pink areas in the upper images (Scale bar: 200 μm) are magnified below (Scale bar: 5 μm). (B) Merged staining results for samples presented as in (A) 
(Scale bar for magnified images: 10 μm). (C) mRNA and protein levels of PSME2 in transfected cells. (D-G, K) The impact of PSME2 on the proliferation of tumor cells was 
assessed through colony formation, CCK-8, and EdU uptake assays (Scale bar: 400 μm). (H) Tumor cell migration and invasion were assessed with a Transwell assay approach. 
(I, J) Tumor cell migration following PSME2 overexpression was assessed through a wound healing assay approach. (L) Tumor images. (M) Tumor immunohistochemical staining 
for PCNA and Ki-67. (N) Tumor volumes. (O) Tumor weights. *P < 0.05, **P < 0.01, ***P < 0.001. 
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The PSME2-Activating Drug Irinotecan Acts 
Synergistically with Paclitaxel to Inhibit 
Osteosarcoma Proliferation 

The identification of medications that activate 
PSME2 is essential. The cMap tool was used to filter 
candidate compounds, revealing 30 potential 
PSME2-activating compounds based on consistent 
changes in transcriptional expression thereof in 9 cell 
lines (Figure 8A). Of these compounds, 6 were 
topoisomerase inhibitors, suggesting a close link 
between PSME2 and specific mechanisms within 
tumor cells (Figure 8B). With the COMPARE tool, the 
GI50 values for these compounds when treating a 
range of cancer cell lines were assessed, excluding 
NM-PPI due to a lack of testing data. For irinotecan, 
the average −log10(GI50) was −7.01, and high levels of 
PSME2 expression in BC cells were associated with a 
lower GI50 (Figure 8C). To assess the potential for 
binding between the PSME2 protein and irinotecan, a 
molecular docking study was conducted. Five models 
of PSME2 were constructed with alphaFold2.0 based 
on the obtained FASTA sequence (Supplementary 
Material 1), with the top-ranked model exhibiting an 
Overall Quality Factor of 91.85 (Figure 8D). Discovery 
Studio v19.1.0 was then used to perform molecular 
docking analyses, revealing the successful docking of 
irinotecan with PSME2, with a maximum 
LibDockScore of 125.562 (Figure 8E). This suggests 
that irinotecan is a candidate for the activation of 
PSME2. 

Subsequently, the association between PSME2 
expression levels and chemotherapy response in 
cancer was assessed using ROCplotter. This showed 
that PSME2 was highly expressed in patients with OV 
that responded to chemotherapeutic drugs, including 
paclitaxel and taxane, with respective areas under the 
curve for 5-year RFS of 0.7 and 0.61 (Figure 9A). As 
OV patients with low levels of PSME2 expression 
responded poorly to routine chemotherapy, the 
possibility that the PSME2-activating medication 
irinotecan may increase tumor chemosensitivity was 
investigated. Paclitaxel is a successful chemothera-
peutic drug commonly used to treat a variety of 
cancers. However, although the drug shows high 
initial efficacy, repeated usage invariably leads to 
resistance [55]. Then, we investigated the effects of 
irinotecan combined with chemotherapeutic drugs on 
osteosarcoma cells, using paclitaxel as an example. It 
was found that both irinotecan and paclitaxel 
substantially and dose-dependently suppressed 
osteosarcoma cell growth (Figure 9B-9C). It was also 
found that subcytotoxic combinations of paclitaxel 
and irinotecan resulted in cell death, indicating 
synergistic interactions between the drugs (Figure 

9D-9E, Table S8). Interestingly, irinotecan confirmed 
this hypothesis by activating PSME2 expression at 
both the mRNA and protein levels (Figure 9F). These 
findings provide support for the use of irinotecan as a 
PSME2 activator in combination with chemothera-
peutic agents to improve the treatment of cancers. 

Discussion 
Many prior studies have extensively 

characterized PSME2, revealing that it plays 
important roles in shaping transcriptional regulation, 
cell cycle progression, 20S proteasome activity, 
learning, memory, immune response induction, and 
the suppression of depressive behaviors [56]. 
Recently, this protein has also been suggested to serve 
as a specific regulator of tumor-related behaviors for 
oncogenic progression in cancers such as ESCA [6], 
GA [5], and BRCA [8]. Building on these prior reports, 
the present study was conducted to systematically 
analyze the expression, prognostic relevance, and 
functions of PSME2 across cancer types.  

PSME2 was down-regulated at the mRNA level 
and up-regulated at the protein level in OV, LUAD, 
LIHC, and GBM tumor tissues compared to 
corresponding normal tissues. The phenomenon may 
be related to post-transcriptional and post- 
translational modifications of PSME2. In hepato-
cellular carcinoma, Snail mRNA was destabilized and 
degraded by METTL3 (m6A methyltransferase), with 
METTL3 binding to methylated Snail mRNA via 
YTHDF1 and eEF-2 and triggering the translational 
elongation of Snail mRNA [57]. Similarly, in 
METTL3-deficient acute myeloid leukemia cells, 
c-MYC, Bcl-2, and PTEN protein levels were reduced 
despite a 2-5 log2-fold increase in mRNA expression 
[58]. In the present study, PSME2 was found to be 
associated with the expression of a variety of genes 
associated with RNA modification, suggesting that 
the discrepancy between the mRNA and protein 
expression of PSME2 may be the result of 
post-transcriptional modifications. In addition, the 
regulation of TEM8 protein bythe E3 ubiquitin ligase 
ASB10 in triple-negative breast cancer tissues resulted 
in higher levels of TEM8 protein than in other 
subtypes of breast cancer, while the transcript levels 
were lower than in luminal breast cancer, suggesting 
that post-translational modification is also responsible 
for this discrepancy between the protein and mRNA 
expression levels [59]. However, extensive 
experimental verification is needed to determine 
whether PSME2 is regulated by post-translational 
modifications. This provides a direction for 
subsequent investigations into the mechanisms 
underlying the role of PSME2 in cancer.  
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Figure 8. Evaluation of the association between PSME2 and therapeutic outcomes, PSME2-activating drug identification, and molecular docking analyses. 
(A) A heatmap compiling the top 30 compounds associated with consistent transcriptional changes to those impacted by median PSME2 expression grouping. Similarity scores 
are represented with colors. pc denotes the percent of total perturbagens, querying the column sample against all rows, that exceed the given thresholds. The height of the light 
orange bar indicates % connections ≥95 and the height of the dark orange bar indicates % connections ≥97.5. ts_pc denotes the percent of total Touchstone perturbagens that 
connect to the selected row perturbagen above the indicated thresholds. The height of the light blue bar represents % connections ≥95 and the height of the dark blue bar 
represents % connections ≥97.5. (B) MoA scatter plots representing the MoAs for the top 30 compounds shown in (A). (C) The NCI60 project was used to assess irinotecan 
GI50 values (left) and PSME2 levels in cell lines (right). The central line corresponds to mean −log10(GI50) or PSME2 expression values. (D) alphaFold2.0 was used to construct 
a model of PSME2. (E) The top 3D PSME2 structure constructed by homology modeling, with the upper left images showing the PSME2 pocket for drug binding. Candidate drug 
2D structural characteristics, interacting amino acid residues, molecular forces, and molecular distances are also presented. Abbreviations: HIS, histidine; LYS, lysine; VAL, valine; 
PRO, proline; ASP, aspartic acid; THR, threonine; ILE, isoleucine. 
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Figure 9. PSME2 activator irinotecan acts synergistically with paclitaxel in inhibiting the proliferation of osteosarcoma cells. (A) Box plots showing differences 
in PSME2 expressiont between responders and non-responders, with ROC curves corresponding to the ability of PSME2 levels to predict patient therapeutic responses, as 
assessed with the online ROCplotter tool. (B) Dose-dependent cytotoxicity of irinotecan and paclitaxel in HOS cells. (C) Dose-dependent cytotoxicity of irinotecan and 
paclitaxel in U2OS cells. (D) Cytotoxic effect of the combination of 0.1The cμM irinotecan and 0.1 μM paclitaxel in HOS and U2OS cells. (E) Osteosarcoma cells were co-treated 
with different concentrations of irinotecan and paclitaxel for 48 h. Combination index (CI) was determined by the Chou-Talalay method. (F) Alterations in PSME2 mRNA and 
protein levels after treatment of osteosarcoma cells with 10 µM irinotecan. 

 
Moreover, PSME2 appears to function as a 

protective factor in the prognosis of SKCM, BRCA, 
and BLCA, while acting as a prognostic risk factor in 
KIRC, LGG, and UVM. This dual role of PSME2 may 
be attributed to the activation of distinct molecular 
pathways in different cancer types, underscoring the 
inherent complexity and heterogeneity characteristic 
of cancer biology. PSME2 was also identified as a 
potential pan-cancer biomarker for M1 macrophage 
infiltration. Lastly, screening and molecular docking 
studies were used to identify candidate drugs for 
PSME2 activation. It is noteworthy that the largest 
proportion of these candidate drugs were found to be 
topoisomerase inhibitors. Topoisomerases are 
enzymes that cleave one or both of the 

sugar-phosphate backbones of double-stranded DNA 
without altering its chemical composition [60]. The 
activities of topoisomerases are known to be 
markedly increased in rapidly dividing cancer cells 
[61]. Numerous critical cellular processes, such as 
transcription, chromosomal condensation, recombi-
nation, and DNA replication, depend on 
topoisomerases [61]. Topoisomerase inhibitors can 
cause DNA damage and death in cancer cells by 
capturing covalent complexes of topoisomerase, 
suggesting that PSME2 may inhibit cancer through 
the process of DNA damage. 

Immune checkpoint inhibitor (ICI) drugs 
including antibodies specific for CTLA-4, PD-1, and 
PD-L1 are the most effective and routinely used form 
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of immunotherapy in clinical settings. TMB and MSI 
are parameters that can be used to predict tumor 
sensitivity to these drugs, with TMB- or MSI-high 
tumors being more likely to respond to ICIs [62]. 
Here, a positive association was noted between 
PSME2 expression and TMB, MSI, and immune 
checkpoint expression in most analyzed cancer types. 
Following the administration of ICIs (anti-PD1, 
anti-PDL1, anti-CTLA4), responders tended to exhibit 
higher PSME2 levels relative to non-responders. This 
suggests that higher PSME2 levels in most cancers 
coincide with higher TMB and MSI levels, 
contributing to improved therapeutic outcomes 
following the administration of immunotherapeutic 
agents. Impaired PSME2 expression has previously 
been tied to the ability of colon tumors to avoid 
immunosurveillance [63]. In fibroblasts overexpres-
sing the proto-oncogene HER-2/neu, the impairment 
of PSME2 expression or function also impacted the 
efficacy of HER-2/neu-targeted T-cell-based 
immunotherapy, contributing to drug resistance [8]. 
PSME2 may thus represent an important predictor of 
tumor immune status.  

In GO enrichment analyses, PSME2 was related 
to innate immune response regulation and 
cytokine-mediated signaling. When evaluating six 
different therapeutically relevant tumor types, high 
levels of PSME2 expression tended to be evident in 
cancers of the IFN-γ-dominated C2 subtype. As a 
major inflammatory cytokine, IFNγ plays a key role in 
shaping immune response induction, tumor 
immunosurveillance, and the maintenance of normal 
tissue homeostasis [64]. IFNγ signals through a 
JAK/STAT1 pathway to promote the upregulation of 
a range of interferon-stimulated genes with important 
immune effector activities [64]. GSEA results in the 
present study also supported the potential ability of 
PSME2 to influence tumor development or progres-
sion by regulating IFN-α and IFN-γ responses. Such a 
mechanism for the PSME2-mediated regulation of 
tumor development has not previously been reported, 
highlighting a promising avenue for future study.  

M1 macrophages are associated with more 
robust antitumor properties in contrast to pro- 
tumorigenic M2 macrophages such that therapies 
capable of promoting M2-to-M1 macrophage 
polarization may contribute to improved patient 
outcomes. Indeed, there is in vivo experimental 
evidence that inducing the M1 polarization of M2 
macrophages can suppress angiogenesis and BC 
tumor growth [65]. Here, higher levels of PSME2 
expression were positively correlated with M1 
macrophage infiltration in both bulk and single-cell 
transcriptomic datasets, and immunofluorescent 
staining confirmed the co-expression of PSME2 and 

M1 macrophage marker proteins. This strongly 
supports a role for PSME2 as a regulator of antitumor 
immunity in many types of cancer. As such, potential 
PSME2-activating drugs were identified for potential 
use in combination with existing therapies with the 
goal of enhancing tumor chemosensitivity.  
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