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Abstract 

Pancreatic cancer is a malignancy with high mortality. In addition to the few symptoms until the disease 
reaches an advanced stage, the high fatality rate is attributed to its rapid development, drug resistance and 
lack of appropriate treatment. In the selection and research of therapeutic drugs, gemcitabine is the 
first-line drug for pancreatic cancer. Solving the problem of gemcitabine resistance in pancreatic cancer 
will contribute to the progress of pancreatic cancer treatment. Long non coding RNAs (lncRNAs), which 
are RNA transcripts longer than 200 nucleotides, play vital roles in cellular physiological metabolic 
activities. Currently, our group and others have found that some lncRNAs are aberrantly expressed in 
pancreatic cancer cells, which can regulate the process of cancer through autophagy and Wnt/β-catenin 
pathways simultaneously and affect the sensitivity of cancer cells to therapeutic drugs. This review 
presents an overview of the recent evidence concerning the node of lncRNA for the cross-talk between 
autophagy and Wnt/β-catenin signaling in pancreatic cancer, together with the practicability of lncRNAs 
and the core regulatory factors as targets in therapeutic resistance. 
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Introduction 
Pancreatic cancer (PC) is one of the deadliest 

cancers. Ductal differentiation is a common 
phenomenon in PC (>90%) [1], and invasive ductal 
adenocarcinoma is a cardinal type, accounting for the 
majority of pancreatic tumors (>85%) [2]. 
Neuroendocrine tumors and acinar carcinomas are 
infrequent while more infrequent tumors include 
colloid carcinomas, pancreatoblastomas and solid- 
pseudopapillary neoplasms [3]. Now, pancreatic 
ductal adenocarcinoma (PDAC) has become a 
synonym for PC and can directly refer to PC [3]. 
According to the American Cancer Society, in 2023, 
there will be 64,050 new cancer cases of PC in the 

United States, accounting for 3.27% of the total cases 
(1,958,310), and 50,550 deaths, accounting for 8.29% of 
the total number (609,820) [4]. Meanwhile, PC 
currently has the lowest 5-year relative survival rate 
of all cancers (12%) [4]. This is associated with its poor 
prognosis due to factors such as low rate of early 
detection, rapid progression, development of drug 
resistance and lack of appropriate treatment. After 
long-term clinical treatment research, it has been 
established that the treatment of PC is mainly based 
on surgical resection, supplemented by chemotherapy 
[5]. Gemcitabine is the first-line drug for the treatment 
of advanced PC [6], and it has shown better efficacy in 
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combination with capecitabine [7] and albumin- 
bound paclitaxel [8]. In addition, combination 
chemotherapy with fluorouracil, leucovorin, 
irinotecan, and oxaliplatin (FOLFIRINOX) or 
nanoliposome irinotecan plus fluorouracil and 
leucovorin has been proposed in recent years, and 
patients treated with combination therapy have 
longer overall survival than those treated with 
gemcitabine alone [9, 10]. However, even though 
adjuvant therapy has been improved, the mortality 
rate of PC patients has remained stubbornly high, 
which is associated to chemotherapy resistance. 
Admittedly, PC cells can develop resistance to 
gemcitabine in a variety of ways [11], and most of the 
research on the chemical resistance of advanced PC 
has focused on gemcitabine, while the research on 
other drugs is still in its infancy [12]. Therefore, there 
is an urgent demand to elucidate the mechanism of 
gemcitabine resistance in PC cells for the treatment.  

Long non coding RNAs (lncRNAs) are 
transcripts larger than 200 nucleotides with no or 
limited protein-coding potential. More than 68% of 
the genes expressed in the human transcriptome are 
transcribed into lncRNAs [13]. LncRNAs can be 
involved in regulating various physiological and 
pathological cell activities. In the nucleus, lncRNAs 
act as enhancers, decoys, scaffolds or guides to 
directly interact with DNA or chromatin regulatory 
factors, such as transcription factors and 
RNA-binding proteins, to control gene expression. 
Whereas in the cytoplasm, lncRNAs can 
competitively bind with miRNA to regulate mRNA 
stability and translation or recruit cofactors and 
influence the activity of related enzymes to regulate 
the transcription and translation process [14-16]. 
Nowadays, lncRNAs have attracted more and more 
attention, and there is sufficient evidence that lncRNA 
is related to multiple diseases, especially cancer. In 
cancer cells, abnormally expressed lncRNA has been 
viewed as a classical oncogene or tumor suppressor 
gene, with variation in lncRNA expression species, 
amount of expression and even efficacy in different 
cancers and at different times of progression [17, 18]. 
In our previous study, we found that in PC, there are 
lncRNAs simultaneously regulating Wnt/β-catenin 
and autophagy, which can lead to gemcitabine 
resistance, and lncRNAs that can be used as 
biomarkers for prognosis analysis were also screened 
through data analysis [19, 20]. Therefore, we believe 
that lncRNAs have the potential to regulate PC 
progression and lead to drug resistance from both 
Wnt/β-catenin and autophagy pathways.  

In this review, we collect lncRNAs related to 
Wnt/β-catenin and autophagy pathways in PC, 
discuss their roles in processes regulating cell 

metabolism and effects on chemoresistance, from 
which we identify the shared pathways with core 
factors to provide new targets and research directions 
for PC prevention and treatment.  

LncRNAs regulate Wnt/β-catenin signaling 
pathway in PC 

Wnt/β-catenin signaling pathway is of vital 
importance in regulating various physiological 
activities of cells, including tissue homeostasis, cell 
proliferation, cell differentiation and cell death 
[21-23]. The canonical Wnt/β-catenin pathway is 
activated by the binding of endocrine or paracrine 
Wnt ligands to Frizzled (FZD) and low density 
lipoprotein receptor-related protein (LRP) family 
membrane receptors on the cell surface. In the absence 
of Wnt ligand, β-catenin is captured by a complex 
consisting of adenomatous polyposis coli (APC), axis 
inhibitor (AXIN), casein kinase 1 (CK1) and glycogen 
synthase kinase-3 beta (GSK‑3β), resulting in 
degradation of β-catenin. Upon Wnt activation, the 
complex is recruited to the plasma membrane through 
interaction with the FZD, thus losing its ability to 
degrade β-catenin. After that, β-catenin would 
translocate from cytoplasm to nucleus and interact 
with the transcriptional response element TCF/LEF 
(T-cell factor/lymphoid enhancer-binding factor) to 
activate the transcription of target genes [24]. 
Wnt/β-catenin signaling regulates PC from multiple 
perspectives including initiation, progression, 
propagation and treatment resistance [25, 26]. In 
addition, the abnormal activation of Wnt promotes 
the immunosuppression of PC [27], promotes the 
development and differentiation of pancreatic cancer 
stem cells (PaCSCs) [28], and is associated with poor 
prognosis [29].  

In general, lncRNAs can regulate the 
Wnt/β-catenin pathway in multiple ways (Fig. 1), but 
mainly by spongating miRNA to stabilize mRNA and 
then up-regulate the expression of the corresponding 
protein. Among these studies shown in Table 1 (23 
articles), nearly half (11 articles) described that 
lncRNAs could act as competitive endogenous RNAs 
(ceRNAs) to competitively adsorb miRNAs, resulting 
in loss or attenuation of miRNA function and 
promoting the expression of target genes acting on 
different links in the Wnt/β-catenin pathway. Some 
target genes are integral members of the 
Wnt/β-catenin pathway, such as FZD4/6, LPR6 and 
β-catenin, which are up-regulated by lncRNA FYVE, 
RhoGEF, and PH domain containing 5 antisense RNA 
1 (FGD5-AS1) [30] and lncRNA distal-less homeobox 
6 antisense RNA 1 (DLX6-AS1) [31] to enhance Wnt 
signaling. Other target genes indirectly affect the 
Wnt/β-catenin pathway. Cyclin dependent kinase 14 



Int. J. Biol. Sci. 2024, Vol. 20 
 

 
https://www.ijbs.com 

2700 

(CDK14, PFTK1), a serine/threonine protein kinase 
that can induce phosphorylation of LRP5/6 to activate 
the Wnt/β-catenin pathway [32, 33], can be 
up-regulated by lncRNA H19 imprinted maternally 
expressed transcript (H19) [34]. In the nucleus, 
forkhead box M1 (FOXM1), forkhead box O1 
(FOXO3), pygopus family PHD finger 2 (PYGO2) and 
DNA topoisomerase II alpha (TOP2A) can regulate 
the transcription of Wnt/β-catenin pathway 
downstream genes through interacting with 
β-catenin. Inhibiting the original activity of lncRNAs 
by binding specific proteins is another way to regulate 
the Wnt/β-catenin pathway. Both lncRNA long 
intergenic non-protein coding RNA 01614 
(LINC01614) [35] binding GSK‑3β and lncRNA 
LINC01197[36] binding β-catenin can affect the 
original function of the protein to regulate Wnt signal 
transduction.  

What is special in these studies is the regulation 
of Wnt/β-catenin pathway by lncRNAs through 
enhancer of zeste 2 polycomb repressive complex 2 
subunit (EZH2) and human antigen R (HuR). EZH2 is 
a catalytic subunit of polycomb repressive complex 2 
(PRC2) that can restrain transcription of target genes 

by triggering trimethylation of methylation of histone 
H3 at lysine 27 (H3K27me) [37, 38]. LncRNA 
LINC01133 can recruite methylated EZH2 to mediate 
histone methylation and up-regulate dickkopf Wnt 
signaling pathway inhibitor 1 (DKK1) [39] and 
AXIN2[40] promoter methylation, which inhibited 
DKK1 and AXIN2 to activate Wnt/β-catenin signaling 
pathway. The homeobox transcript antisense 
intergenic RNA (HOTAIR) is one of the most 
extensively studied lncRNAs found dysregulated in 
human cancer. Although the mechanism of lncRNA 
HOTAIR in PC is unknown, HOTAIR can increase the 
radioresistance of PC cells by down-regulating Wnt 
inhibitory factor 1 (WIF1) [41], which inhibits the 
activation of Wnt/β-catenin signaling pathway by 
binding Wnt protein and inhibiting its signal 
transduction activity in the intercellular space [42]. In 
esophageal squamous cell carcinoma cells [43] and 
human chondrosarcoma cells [44], HOTAIR inhibits 
WIF1 expression by promoting trimethylation of 
H3K27 in the WIF1 promoter, thereby activating 
Wnt/ β-catenin pathway. In PC, HOTAIR may also 
regulate WIF1 in a similar way.  

 

 
Figure 1. The role of lncRNAs in modulating the Wnt/β-catenin signaling pathway in pancreatic cancer. Most lncRNAs indirectly regulate Wnt/β-catenin signaling 
pathway through sponging miRNA, among which the top half of lncRNAs have an activation effect and the bottom two have an inhibitory effect. The targets of miRNAs are 
directly the components of the Wnt/β-catenin pathway, while other target proteins regulate the components of the Wnt/β-catenin pathway. Among them, factors that can 
activate Wnt/β-catenin are marked in red, and those that inhibit Wnt/β-catenin are marked in blue. In addition, there are also lncRNAs (such as LINC01614 and LINC01197) that 
directly bind to Wnt/β-catenin pathway proteins and inhibit their physiological activity. Specifically, HuR can stabilize RNA, including mRNA and lncRNA. The combination of 
TSLNC8, HuR and β-catenin mRNA can promote β-catenin translation and HuR can stabilize WTAPP1, which enhances WTAP translation by collecting EIF3B into WTAP mRNA 
and finally regulates Wnt/β-catenin pathway. 
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Table 1. LncRNA regulates PC via Wnt/β-catenin signaling pathway 

LcnRNA Gene and pathway Interaction with 
wnt signaling 

Cancer phenotype Refere
nce 

BANCR miR-195-5p Activate Promote PC cell proliferation, invasion and migration [129] 
DGCR5 miR-3163/TOP2A Activate Promote PC cell migration, invasion EMT and gemcitabine resistance [369] 
DLX6-AS1 miR-497-5p/FZD4/FZD

6 
Activate Promote PC cell proliferation, invasion, migration and inhibit apoptosis 

Promote PC growth and metastasis in vivo 
[31] 

FAM83H-AS
1  

FAM83H/ β-catenin  Activate Promote PDAC cell proliferation, migration and invasion in vitro and in vivo [51] 

FGD5-AS1 miR-577/β-catenin, LRP6 Activate Promote PC cell proliferation, invasion and migration [30] 
GATA3-AS1 miR-30b-5p/TEX10 Activate Promote PC cell viability, proliferation, invasion, stemness and inhibit apoptosis [370] 
H19 miR-194/PFTK1/LRP5/

6 
Activate Promote PDAC cell proliferation and migration [34] 

HOTAIR WIF1 Activate Enhance the radiosensitivity of PDAC cells, reduce the proliferation, and increase the 
apoptosis of cells after radiation 

[41] 

HOTAIR Wnt Activate Promote PC cell proliferation, migration, invasion and EMT [371] 
HOTTIP WDR5/HOXA9/Wnt Activate Enhance CSC properties and promote PDAC tumorigenesis [372] 
HULC Wnt Activate Promote PC cell proliferation and invasion and inhibit apoptosis [373] 
LINC01133 EZH2/ 

H3K27me/AXIN2 
Activate Promote PC cell proliferation, migration, invasion, EMT and inhibit apoptosis [40] 

LINC01133 DKK1 Activate Promote PC cell growth, proliferation, migration, metastasis and invasion  [39] 
LINC01614 GSK‑3β/AXIN1 Activate Promote PC cell proliferation, migration, invasion in vitro and tumor proliferation in vitro 

and in vivo 
[35] 

OIP5-AS1 miR-320b/FOXM1 Activate Promote PC cell proliferation, migration and invasion [374] 
PVT1 miR-619-5p/PYGO2 Activate Promote PC cell viability and gemcitabine resistance in vitro and in vivo [20] 
SH3BP5-AS1 miR-139-5p/CTBP1 Activate Promote PC cell migration, invasion and gemcitabine resistance [375] 
TSLNC8 HuR/β-catenin Activate Promoted PC cell proliferation and invasion in vitro and enhance PC growth and 

metastasis in vivo 
[46] 

WTAPP1 WTAP Activate Promotes PC cell proliferation and invasiveness [49] 
LINC00261 miR-552-5p/FOXO3 Inhibit Inhibit PC cell migration, invasion and EMT [157] 
LINC01197 FOXO1/LINC01197/β-c

atenin 
Inhibit Inhibit PC cell proliferation and growth [36] 

MEG3  miR-183/BRI3 Inhibit Inhibit pNET cell viability, invasion and migration and induce apoptosis.  [376] 
NEN885  Wnt Inhibit Inhibit GEP - NEN cell migration, invasion and EMT [377] 

 
HuR is an RNA binding protein that binds to 

adenylate/uridylate-rich regions primarily in the 3′ 
UTR and regulates mRNA stability and translation 
[45]. In PC, the combination of tumor suppressive 
lncRNA on chromosome 8p12 (TSLNC8), HuR and 
β-catenin mRNA can promote β-catenin translation 
and thus activate Wnt signaling [46]. Cellular nucleic 
acid binding protein (CNBP) is a conserved 
single-stranded nucleic acid-binding protein that acts 
as both a transcription regulator and a translational 
regulator [47]. Protein tyrosine kinase 7 (PTK7), 
T-cell-specific transcription factor 4 (TCF4) and 
CDK14 are direct transcriptional targets of CNBP, 
which can directly or indirectly participate in 
Wnt/β-catenin pathway regulation [48]. In PC, CNBP 
could recognize N6-methyladenosine (m6A) lncRNA 
WT1 associated protein pseudogene 1 (WTAPP1) and 
recruit HuR to promote WTAPP1 stability. Further-
more, WTAPP1 can enhance WTAP translation by 
recruiting eukaryotic translation initiation factor 3 
subunit B (EIF3B) to WTAP mRNA, induce 
carcinogenic Wnt signaling and promote PC 
progression [49]. Interestingly, the m6A modification 
of RNA is dependent on dedicated methyltransferases 
(METTL), the core of which is the METTL3- 
METTL14-WTAP complex [50]. Then m6A-modified 
WTAPP1 can promote WTAP expression levels, and 
WTAP may also form methyltransferase to promote 
m6A modification of WTAPP1. There may be a 

positive feedback regulation between WTAPP1 and 
WTAP. Furthermore, lncRNA family with sequence 
similarity 83 member H antisense RNA 1 
(FAM83H-AS1) is similar to TSLNC8 and FGD5-AS1 
in that it can up-regulate the level of β-catenin to 
activate Wnt/β-catenin signaling, but the difference is 
that FAM83H-AS1 induces FAM83H expression by 
stabilizing FAM83H mRNA, thus enhances the ability 
of FAM83H binding to β-catenin and inhibiting its 
degradation, and ultimately promotes the 
proliferation, invasion and metastasis of PC cells [51]. 
The precise mechanism by which FAM83H-AS1 
stabilizes FAM83H mRNA is currently unknown, but 
in ovarian cancer, FAM83H-AS1 could interact with 
HuR and increase the stability of HuR protein, which 
has certain guiding significance [52].  

LncRNAs regulate autophagy pathway in PC 
There are two sides in the process of 

transformation and malignant development of cancer 
cells by autophagy. On the one hand, autophagy 
removes damaged organelles, peroxides, endogenous 
bacteria and viruses, prevents normal cells from 
producing excessive oxidative stress damage to DNA, 
maintains normal metabolic level, and thus maintains 
homeostasis of intracellular environment and 
prevents malignant transformation; on the other 
hand, while maintaining cell homeostasis, autophagy 
can also remove various tumor suppressor factors and 
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even therapeutic drugs, increasing drug resistance, 
which is conducive to the maintenance of tumor and 
its malignant process[53-55]. Current studies have 
shown that the level of autophagy in PC cells is 
universally elevated which is highly activated 
autonomously in the late stage from the formation of 
intraductal tumors to PC, and a high level of 
autophagy is required for sustained malignant 
growth in vivo and in vitro [56].  

The high level of autophagy is associated with 
the abnormal expression of MIT/TFE family in PC, 
among which melanocyte inducing transcription 
factor (MITF), transcription factor binding to IGHM 
enhancer 3 (TFE3) and transcription factor EB (TFEB) 
are strongly correlated with autophagic lysosomal 
characteristics [57, 58]. Under nutrient replete 
conditions, mechanistic target of rapamycin complex 
1 (mTORC1) at the lysosomal membrane 
phosphorylates MIT/TFE proteins, leading to their 
association with 14-3-3 proteins and retention in the 
cytoplasm, whereas mTORC1 inactivation upon 
starvation allows its nuclear translocation [59-62]. 
Autophagy related (ATG) genes regulated by 
different MIT/TFE family members varied, but the 
genes ATG9B, ATG16L1, GABA type A receptor 
associated protein like 1 (GABARAPL1), WD repeat 
domain, phosphoinositide interacting 1 (WIPI1), and 
UV radiation resistance associated (UVRAG), which 
can enhance the biosynthesis of autophagosomes and 
lysosomes and activate their function, were more than 
2-fold expressed when MITF, TFE3, or TFEB were 
overexpressed, indicating the vital role of the 
MIT/TFE family in autophagy induction[62]. 
However, in PC, the nucleoplasmic transport protein, 
importin 8 (IPO8) can bind to stabilize MIT/TFE 
factors and translocate to the nucleus, leading to 
activation of transcription of target genes [57]. 

Current studies on lncRNAs regulating autophagy 
pathway in PC are shown in the following table (Table 
2).  

In the research of autophagy regulation in PC, 
most lncRNAs also play a role by sponging miRNA to 
stabilize mRNA. For lncRNAs that directly regulate 
autophagy pathway factors, similar to the regulation 
of Wnt pathway, lncRNA plasmacytoma variant 
translocation 1 (PVT1) also regulates autophagy 
through the target miR-619-5p [20]. ATG14 could be 
down-regulated by miR-619-5p but also activate 
autophagy by binding to PVT1. Vacuole membrane 
protein 1 (VMP1) is the downstream target of hypoxia 
inducible factor 1 subunit alpha (HIF-1α), which can 
promote the separation of the isolation membrane 
from the endoplasmic reticulum, and then form free 
autophagosomes [63]. On the other hand, PVT1 can 
promote autophagy and reduce gemcitabine 
sensitivity in PC by regulating the miR-143/HIF-1α/ 
VMP1 axis [64]. In addition to ATG14, there are 
lncRNAs that affect autophagy through ATG7. 
HOTAIR can promote autophagy and down-regulate 
the radiosensitivity of PC cells by targeting ATG7. In 
liver ischemia-reperfusion injury [94] and acute lung 
injury [95], HOTAIR can up-regulate ATG7 and 
promote autophagy by sponging miR-17-5p and 
miR-20b-5p. As a key component of the tumor micro-
environment (TME), cancer-associated fibroblasts 
(CAFs) have complex functions to protect cancer cells, 
which are generally believed to promote cancer and 
may also inhibit tumor progression in some 
circumstances [65, 66]. In PC cells, lnc-FSD2-31:1 can 
down-regulate miR‐4736 in extracellular vesicles and 
up-regulate ATG7, the target of miR‐4736 in CAF, 
leading to promotion of CAF autophagy and 
inhibition of CAF fibrosis [67].  

 
 

Table 2. LncRNA regulates PC via autophagy 

LcnRNA Gene and pathway Interaction with 
autophagy 

Cancer phenotype Reference 

HOTAIR ATG7 Activate Reduce the radiosensitivity of PC cells [378] 
Lnc-FSD2-31 miR-4736/ATG7 Activate Inhibit PC cell growth [67] 
MALAT1 HuR/TIA1 Activate Promote PC proliferation and metastasis [92] 
PVT1 miR-619-5p/ATG14 Activate Promote PC cell viability and gemcitabine resistance [20] 
PVT1 miR-143/HIF-1α/VMP1 Activate Promote PC cell viability and gemcitabine resistance [64] 
SNHG14 miR-101 Activate Promote PC cell viability, proliferation and gemcitabine resistance [379] 
ANRIL miR-181a/HMGB1 Repress Promote PC cell proliferation, migration, invasion and gemcitabine resistance [68] 
LINC01207 miR-143-5p/AGR2 Repress Promote PC cell growth and inhibit apoptosis [380] 
LINC01133 miR-216a-5p/TPT1/mTOR

C1 
Repress Promote PC cell proliferation and metastasis [381] 

LZTS1-AS1 LZTS1-AS1/miR-532/TWI
ST1 

Repress Promote PC cell proliferation, migration, invasion and oncogenicity, inhibit 
apoptosis and autophagy 

[86] 

UCA1 UCA1/MAPK/ERK Repress Promote PC cell mitochondrial fusion and migration, inhibit mitophagy [89] 
HCP5 miR-214-3p/HDGF —— Promote PC-GR cell proliferation, invasion and migration, inhibit cell 

apoptosis and increase gemcitabine resistance 
[237] 
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Among the factors that indirectly regulate the 
autophagy pathway, the regulation of HMGB1(high 
mobility group box 1) and TWIST1(twist family 
bHLH transcription factor 1) on autophagy is 
controversial. In the study of Chen et al. [68], the 
knockdown of lncRNA cyclin dependent kinase 
inhibitor 2B antisense RNA 1 (ANRIL) up-regulated 
miR-181a and down-regulated HMGB1 at mRNA and 
protein levels, which made cancer cells sensitive to 
gemcitabine and showed inhibition of tumor activity 
and promotion of autophagy. Interference of 
miR-181a and overexpression of HMGB1 showed 
opposite biological effects. Therefore, HGMB1 
appears to promote PC progression and inhibit 
autophagy. As a cancer-promoting factor, HMGB1 is 
also regulated by lncRNA small nucleolar RNA host 
gene 16 (SNHG16)/miR-218-5p [69] and lncRNA zinc 
finger E-box binding homeobox 2 antisense RNA 1 
(ZEB2-AS1)/miR-204 [70] axis in PC. Extracellular 
HMGB1 can regulate inflammation and PC 
progression through the receptor of advanced 
glycosylation end-product specific receptor (AGER) 
[71, 72] and Toll-like receptor 4 (TLR4) [73]. However, 
in the nucleus, HMGB1 can repair damaged DNA 
[74]. At the same time, low expression of HMGB1 can 
promote the progression of PC, and the decreased 
expression of HMGB1 in the pancreas is related to 
poor survival [75]. The reason may be associated with 
the subcellular localization of HMGB1. Under normal 
conditions, most HMGB1 is localized in the nucleus, 
and there is little HMGB1 in the cytoplasm. While 
under various stresses, HMGB1 is transferred from 
the nucleus to the cytoplasm, and its extracellular 
transport mainly depends on the active secretion of 
living inflammatory cells (such as macrophages) or 
the passive release of necrotic cells [76]. In the aspect 
of autophagy, HMGB1 is generally regarded as an 
autophagy inducing factor [77], and cytosolic HMGB1 
promotes autophagy by directly binding to 
beclin-1[78], contrary to the phenomenon studied by 
Chen et al. [68]. This may be related to the potential 
role of lncRNAs.  

TWIST1 is a transcriptional regulator that has 
been identified to play vital roles in angiogenesis, 
chemotherapy resistance, metastasis, senescence and 
stemness in various cancers, including PC [79, 80]. 
The relationship between TWIST1 and autophagy is 
peculiar. Autophagy deficiency can up-regulate 
TWIST1[81], P62 (Sequestosome 1, SQSTM1) can bind 
and stabilize TWIST1 [82], and the formation of B-cell 
lymphoma 2 (BCL2)/TWIST1 complex can promote 
the nuclear transport of TWIST1 [83]. In contrast, 
TWIST1 silencing can activate AMP-activated protein 

kinase (AMPK) and inhibit mTOR signaling [84], and 
its target gene eva-1 homolog A (EVA1A) can 
promote endothelial cell apoptosis and inflammatory 
activation through autophagy regulation [85]. 
LncRNA leucine zipper tumor suppressor 1 antisense 
RNA 1 (LZTS1-AS1) promotes the proliferation, 
metastasis and oncogenicity of PC cells and inhibits 
autophagy through LZTS1-AS1/miR-532/TWIST1 
axis [86]. The mechanism of TWIST regulating 
autophagy needs further study.  

In addition to macroautophagy, mitophagy in 
PC cells can also be regulated by lncRNAs. The 
MAPK/ERK pathway is closely related to 
mitochondrial dynamics [87], which in turn is related 
to tumor progression [88]. In PC, lncRNA urothelial 
cancer associated 1 (UCA1), which is up-regulated 
and can enhance the migration ability of cancer cells, 
regulates mitochondrial dynamics through the 
activation of MAPK/ERK pathway, including 
up-regulating mitochondrial membrane potential, 
enhancing mitochondrial fusion and reducing 
mitochondrial fission to inhibit mitophagy [89].  

LncRNAs can also regulate autophagy through 
HuR in ways that do not regulate autophagy through 
miRNAs. TIA1 cytotoxic granule associated RNA 
binding protein (TIA1) is the same RNA binding 
protein (RBP) as HuR and has similar regulatory 
effects on RNA [90, 91]. Li et al. [92] illustrated that 
knockdown of lncRNA metastasis associated lung 
adenocarcinoma transcript 1 (MALAT1) reduced HuR 
expression, and a direct interaction between MALAT1 
and HuR was found. On the other hand, knockdown 
of MALAT1 had no significant effect on TIA1 
accumulation, but enhanced its activity after 
transcription, while suppressing the expression of 
autophagy. Therefore HuR can regulate autophagy as 
an endogenous messenger between MALAT1 and 
TIA1 to influence tumor proliferation and metastasis. 
Unfortunately, this article did not validate the 
interaction between HuR and TIA1, but other studies 
have shown that HuR can contribute to the 
maintenance of elevated TIA1 mRNA levels and 
therefore maintain TIA1 expression by binding to 
TIA1 3' UTR [93].  

In general, although most lncRNAs regulate 
autophagy in different directions, they generally 
promote the process of PC, which is related to the 
duality of autophagy, and the generation of drug 
resistance is often related to high levels of autophagy. 
LncRNA can regulate autophagy in a similar way to 
Wnt/β-catenin pathway, mainly as ceRNA binding 
miRNA to regulate downstream targets (Fig. 2).  
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Figure 2. The role of lncRNAs in regulating autophagy in pancreatic cancer. The autophagic process is divided into multiple systems that regulate autophagosome 
formation at different stages. Most lncRNAs also regulate autophagy by sponge miRNA, in which the factors promoting autophagy are marked in red, and the inhibitors are 
marked in red. Among them, PVT1 can not only promote the expression of ATG14, but also directly bind to ATG14 to promote the formation of autophagosomes. In addition, 
PVT1 further increased the expression of VMP1 by up-regulating HIF-1α, and VMP1 promoted the separation of the isolation membrane from the endoplasmic reticulum, thereby 
forming free autophagosomes. Finally, although Lnc-FSD2-31:1 inhibits miR-4736, miR-4736 regulates autophagy of CAFs in the form of exosomes. 

 
LncRNA acts as a cross node in autophagy and 
Wnt/β-catenin pathways 

Molecular basis between Wnt/β-catenin pathway and 
autophagy 

Wnt/β-catenin pathway and autophagy are 
important pathways to regulate cell physiological 
processes and maintain cell homeostasis. In addition 
to the PI3K-AKT-mTOR pathway, AMPK pathway 
and EGFR pathway, which can simultaneously 
regulate Wnt/β-catenin pathway and autophagy 
[94-97], there is signal crosstalk between the two 
pathways, and their components also interact with 
each other at the molecular level to affect their activity 
and protein level.  

β-catenin is a transcriptional regulator 
downstream of the Wnt/β-catenin pathway, which 
negatively regulates autophagy and down-regulates 
the expression of P62 [98-100]. Under starvation, 
microtubule associated protein 1 light chain 3 (LC3) 
directly can target β-catenin for autophagic 
degradation, resulting in reduced binding of β-catenin 

to the P62 promoter and increased transcription of 
P62 to promote autophagy [98, 101]. In addition, 
BCL2, an important target gene of β-catenin [97-99], 
inhibits beclin-1-dependent autophagy [102]. 
Inhibition of Wnt/β-catenin signaling pathway in PC 
can down-regulate BCL2, destroy mitochondrial 
homeostasis, and inhibit tumor growth and 
development [103].  

In the Wnt/β-catenin pathway, GSK‑3β is 
recruited by AXIN to form a complex with APC and 
CK1α to phosphorylate β-catenin, leading to its 
ubiquitination and degradation by the proteasome 
[104, 105]. In the autophagy pathway, GSK‑3β 
phosphorylates unc-51 like autophagy activating 
kinase 1 (ULK1) or acetylates ULK1 through the 
GSK‑3β-TIP60 (lysine acetyltransferase 5, KAT5)- 
ULK1 axis to activate autophagy [106-108]. 
Meanwhile, AMPK and GSK3 coordinate to 
phosphorylate tuberous sclerosis complex (TSC) to 
inhibit mTOR signaling and promote lysosomal 
acidification [109-112]. In addition, GSK3 regulates 
FOXK1 phosphorylation and inhibits nuclear 
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translocation of FOXK1[113, 114], while FOXK1 
inhibits the expression of autophagy genes through 
recruitment of Sin3A complex [115, 116].  

Dishevelled segment polarity protein (DVL) is 
involved in both canonical and noncanonical 
Wnt/β-catenin signaling pathways and DVL is 
recruited to the plasma membrane to bind FZD 
receptors to initiate Wnt/β-catenin signaling [117, 
118]. In the autophagy degradation pathway, DVL 
can directly bind to LC3 and be degraded by P62, 
thereby inhibiting Wnt signaling [119]. The function 
of DVL is also related to ULK1 kinase activity. DVL 
can be phosphorylated by ULK1, and 
Wnt5a-mediated autophagy promotes bacterial 
clearance in macrophages dependent on DVL and 
ULK1 [120, 121]. DVL can also enter the nucleus to 
form protein complexes with β-catenin and TCF, and 
induce the transcriptional expression of target genes 
[122], while DVL phosphorylation by ULK1 inhibits 
the formation of DVL complexes [121].  

In general, the Wnt/ β-catenin pathway and 
autophagy are mutually inhibitory in normal cells. 
But the Wnt/β-catenin pathway and autophagy are 
highly activated in PC compared with normal tissues, 
and the proliferation, migration, invasion, EMT 
(epithelial-mesenchymal transition) and drug 
resistance of cancer cells all depend on high levels of 
Wnt and autophagy [25, 123]. There are other factors 
affecting both Wnt/β-catenin pathway and 
autophagy in PC. A tandem mechanism between 
Wnt/ β-catenin signaling and autophagy has been 
reported to regulate the progression of PC [20, 95, 124, 
125]. According to our previous experimental results 
and research analysis, lncRNA has the potential to 
simultaneously regulate Wnt/β-catenin pathway and 
autophagy.  

Competitive endogenous RNA hypothesis 
The ceRNA hypothesis considers miRNAs as 

miRNA recognition elements (MREs) that bind to 
RNA transcripts via complementary sequences [126]. 
All types of RNA transcripts have different MRE 
binding sites, and they can communicate with each 
other according to the shared MRE, and interact with 
each other to affect the properties and functions of 
RNA transcripts [126].  

In addition to miR-619-5p and miR-143 
mentioned above, PVT1 can also regulate the 
progression of PC through PVT1/miR-20b/CCND1 
(cyclin D1) [127] and PVT1/miR-519d-3p/HIF-1α 
[128] axes. This means that the same lncRNA can 
regulate the same mRNA through different MREs, 
and also can regulate different mRNAs through the 
same MRE. MiR-195-5p as a communication factor, 
BRAF-activated non-protein coding RNA (BANCR) 

can activate the Wnt/β-catenin sighting pathway 
through miR-195-5p [129]. Similarly, miR-195-5p is 
the target of lncRNA LINC00473, which can drive the 
progression of PC [130], and WIPI2, a key autophagy 
regulator [131], can be up-regulated by lncRNA 
ceramide synthase 6 antisense RNA 1 (CERS6-AS1) to 
regulate the migration and apoptosis of PC cells via 
miR-195-5p [132]. In summary, a huge 
communication network is formed between 
lncRNA-miRNA-mRNA.  

Although the ceRNA hypothesis has several 
limitations: miRNAs target a variety of RNAs, they 
exert varying degrees of repression on all of them. The 
differences in RNA types, expression levels, and 
subcellular localization among different types of cells 
make ceRNA networks complex and diverse [126, 
133]. These do not negate the reference value of 
ceRNA hypothesis. Key lncRNAs and miRNAs can 
still be found in the ceRNA network of PC cells.  

Protein-lncRNA interaction 
Protein-RNA interaction is universal [134-136]. 

In addition to acting as sponges for miRNAs, 
lncRNAs can also bind individual proteins or protein 
complexes and regulate their function [135]. Among 
them, lncRNAs can directly bind to proteins to induce 
them to target specific sites, and can also serve as 
scaffolds for the assembly of protein complexes [136]. 
We summarized three types of proteins, which can be 
regulated by lncRNA, have the potential to 
simultaneously regulate autophagy and Wnt/β- 
catenin signaling pathways, and are related to the 
formation of drug resistance in PC.  

HuR 
RBP can control the metabolism of massive 

transcripts and is a key factor that regulates gene 
transcription to translation [137]. HuR is one of the 
most prominent and well-studied factors in RBPs 
[138, 139]. HuR is mainly localized in the nucleus, 
while the abundance in the cytoplasm varies with the 
cell cycle, starting to increase at S phase until the cell 
enters the G2/M phase and decreasing again when 
the cell re-enters the G1 phase [140]. The 
nucleo-cytoplasmic shuttling ability of HuR is closely 
related to its physiological function [138].  

In PC, HuR would target specific mRNAs in 
response to external stresses such as gemcitabine 
[141], hypoxia [142], apoptosis [143], hypoglycemia 
[144], DNA damage [145, 146], and poly ADP-ribose 
polymerase (PARP) inhibitors [146]. PC cells 
interfered with HuR siRNA had decreased migratory 
ability and the tumors formed in vitro became smaller 
[147]. The knockdown of HuR induced more PC cell 
death, while the xenograft tumor experiment using 
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HuR knockout PC cell lines showed no growth at all 
of the subcutaneous tumors [148]. To verify that the 
absence of HuR resulted in the failure of 
tumorigenesis, PC cells supplemented with HuR 
cDNA restored the tumorigenic ability in a nude 
mouse model [148].  

In research on lncRNA, in addition to TSLNC8, 
MALAT1, and WTAPP1 mentioned earlier, HuR can 
stabilize lncRNA DNA damage inducible transcript 4 
antisense RNA 1 (DDIT4-AS1) by binding to the m6A 
site and up-regulated DDIT4-AS1 can mediate 
downregulation of DDIT4 mRNA through upstream 
frameshift 1 (UPF1), an RNA helicase, thereby 
activating the mTOR signaling pathway, enhancing 
PC dryness and inhibiting chemical sensitivity to 
gemcitabine [149]. For mRNA, lncRNA nicotinamide 
nucleotide transhydrogenase antisense RNA 1 
(NNT-AS1) can recognize and stabilize m6A-modified 
integrin subunit beta 1 (ITGB1) mRNA through 
METTL3-HuR to activate the MAPK/ERK/PDL1 
(programmed cell death 1 ligand 1) signaling pathway 
and finally promote the immune escape of PC cells 
[150]. In PC, HuR has the potential to recognize and 
stabilize m6A-modified RNA. In addition, variant 
subcellular localization of circATG7 regulated ATG7 
mRNA level through different pathways [151]. In the 
cytoplasm, circATG7 stabilizes ATG7 mRNA by 
sponging miR-766-5p, and up-regulates ATG7 mRNA 
level by recruiting HuR in the nucleus, which 
eventually leads to the promotion of PC cell 
proliferation, metastasis and autophagy [151]. These 
all demonstrated that HuR can regulate 
Wnt/β-catenin signaling and autophagy through 
multiple pathways and is related to the progression of 
PC (Fig. 3). However, it should be noted that there are 
abundant modification sites on HuR including 
phosphorylation, methylation, and ubiquitination, 
which directly affect HuR subcellular localization and 
RNA binding activity [138]. Further studies are 
needed to investigate post-translational modification 
of HuR in PC.  

FOX transcription factor family 
FOX (forkhead box) family proteins are 

evolutionarily conserved DNA-binding proteins [152, 
153]. Structurally, FOX proteins possess the conserved 
winged helix forkhead domain, also known as the 
DNA-binding domain, for attaching DNA [154]. The 
extra-FOX protein-protein interaction domain 
interacts with other factors to regulate DNA 
transcription and repair [155].  

Here we focused on the FOXO subfamily and 
FOXM1(Fig. 4 and 5). In the nucleus, β-catenin can 
interact with TCF/LEF to induce transcription of 
target genes [24], but FOXO can competitively bind 

with β-catenin to inhibit the activity of β-catenin/TCF 
[156]. Both FOXO1 and FOXO3 are down-regulated in 
PC and inhibit the progression of PC [157-159]. 
Overexpression of LINC00261 can up-regulate 
FOXO3, the target gene of miR-552-5p, and inhibit the 
Wnt/β-catenin signaling pathway in PC [157]. 
LINC01197 is a target gene of FOXO1, which inhibits 
Wnt/β-catenin signaling activity by transcribing 
LINC01197, allowing it to bind to catenin and disrupt 
the interaction of catenin with TCF4 in PC cells [36].  

For autophagy, sirtuin 1 (SIRT1) is a deacetylase, 
which can not only directly regulate the deacetylation 
of autophagy-related factors, such as beclin-1, ATG5, 
ATG7 and LC3 to induce autophagy [160-162], but 
also regulate autophagy through the FOXO family 
members FOXO1 and FOXO3[163, 164]. 
Sirt1-mediated FOXO1 deacetylation could activate its 
function and nuclear translocation to ultimately 
promote autophagy, while activation of FOXO1 can 
enhance the expression of RAS-related GTP-binding 
protein 7 (Rab7) [163], a small GTPase that mediates 
late autophagosome-lysosome fusion [165]. In 
addition, acetylated FOXO1 can directly bind ATG7 to 
induce autophagy [166]. In multiple cell lines, 
including PC cells, it has been confirmed that 
miR-138-5p specifically targets SIRT1 3' untranslated 
region and inhibits autophagy by reducing SIRT1[164, 
167, 168]. Furthermore, knockdown of Rab7 or FOXO1 
in PC inhibited the SIRT1-mediated increase of 
autophagic flux, suggesting that SIRT1 regulates 
autophagy in PC via FOXO1/Rab7 axis [164]. 
However, miR-138-5p can be spongy by lncRNA 
H19[169] and HOTAIR [170], which are up-regulated 
in PC [41, 171]. lncRNA may affect autophagy in PC 
by regulating SIRT1.  

FOXO3 could up-regulate the transcription of 
multiple autophagy genes, such as ULK2, beclin-1, 
phosphatidylinositol 3-kinase catalytic subunit type 3 
(PIK3C3), BCL2 interacting protein 3 (BNIP3), ATG4B, 
ATG4C, ATG5, ATG7, ATG12, ATG13, ATG14, 
ATG16L1, LC3, and GABARAPL1 [172-174]. FOXO3 
deacetylated by SIRT1 can drive the transcription of 
BNIP3 and induce mitochondrial autophagy [175, 
176]. In the study of skeletal dystrophic cachexia of 
PC, SIRT1 can indirectly regulate the expression of 
FOXO1 and FOXO3 by nuclear transcription factor- 
kappa B (NF-kB) signaling [177]. SIRT1 knockout 
induced NF-kB signaling and enhanced NADPH 
oxidase 4 (NOX4) transcription in cachexia muscles 
caused by PC, leading to increased reactive oxygen 
species (ROS) levels and FOXO expression [177]. 
Metformin differentially can regulate cellular ROS 
levels through AMPK-FOXO3-MnSOD (manganese 
superoxide dismutase, SOD2) pathway, especially in 
PC cells [178]. After combined administration with 
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apigenin, ROS levels were further increased and 
exerted anticancer activity through DNA 
damaging-induced apoptosis, autophagy, and 
necrosis [178].  

FOXM1 expression is elevated in a wide range of 
cancer cell lines and cancer types and can be used as a 
biomarker for cancer diagnosis, treatment, and 
prognosis [179-181]. In PC, LINC00857 acts as a 
protein scaffold to bind FOXM1 to ovarian tumor 
family deubiquitinase ubiquitin aldehyde binding 1 
(OTUB1), thereby inhibiting FOXM1 degradation 
through the ubiquitin-proteasome pathway [182]. In 
the Wnt/β-catenin pathway, FOXM1 competes with 
FOXO and combines with β-catenin to regulate the 
transcription of downstream factors, thus modulating 
Wnt signal [183]. In terms of autophagy, FOXM1 is 
shown to up-regulate LC3-II/LC3-I and beclin-1 and 
promote autophagy in bladder cancer [184], liver 
cancer [185], prostate cancer [186], and gastric cancer 
[187], and it is determined in triple-negative breast 
cancer cells that FOXM1 directly binds to the 
promoter of LC3 and beclin-1 genes to promote 
transcription [188].  

HIF family 
In both primary and metastatic tumors, PC has 

characteristics of high levels of fibrosis [189]. The 
resulting hyperplasia of connective tissue forms a 
mechanical barrier around tumor cells, restricting the 
generation of blood vessels. Moreover, PC cells have a 
high level of metabolism, so the cancer 
microenvironmen is severely hypoxic, which is 
another characteristic of PC [190, 191]. The 
mechanism of biological adaptation to hypoxia is 
mediated by hypoxia-inducible factor (HIF) [192], 
which is regulated by a dimer composed of α subunits 
(Hif-1α, HIF-2α and HIF-3α) and β subunits (HIF-1β) 
[193]. Under normal oxygen conditions, HIF-α protein 
subunit is unstable and rapidly degraded by 
proteasome. Under hypoxic conditions, HIF-α is 
stable and translocates to the nucleus to bind to 
HIF-1β, where it is induced to the regulatory regions 
of target genes and modulates their transcription 
[194]. HIF-1α and HIF-2α are two major isoforms in 
mammalian cells. HIF-1α is widely distributed in 
almost all types of cells and is also regarded as a 
widely used hypoxia marker [195], while HIF-2α is 
expressed in certain cell types such as hepatocytes 
and endothelial cells [196].  

 
 

 
Figure 3. The role of HuR during Wnt/β-catenin signaling pathway, autophagy and drug resistance in pancreatic cancer. LncRNA can induce HuR to bind to 
mRNA to promote the translation of downstream factors, or directly bind to HuR to recruit EIF3B to the mRNA translation initiation site, which ultimately manifests as 
autophagy and Wnt/β-catenin pathway activation. In response to different external stresses, HuR is translocated from the nucleus to the cytoplasm, where HuR can up-regulate 
specific factors to regulate drug resistance of pancreatic cancer cells under the conditions of DNA damage, hypoglycemia and gemcitabine treatment. 
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Figure 4. The role of FOXO1 and FOXO3 in regulating Wnt/β-catenin signaling pathway and autophagy in pancreatic cancer. Sirt1-mediated deacetylation of 
FOXO1 and FOXO3 can activate themselves, leading to their nuclear translocation and promoting autophagy. SIRT1 deficiency can induce NF-κB signaling in pancreatic 
cancer-induced cachexia muscles, enhance Nox4 transcription, and induce FOXO expression. In the nucleus, FOXO1 and FOXO3 bind to β-catenin to inhibit its transcriptional 
activity. LINC01197, as a target gene of FOXO1, can also bind to β-catenin to inhibit Wnt / β-catenin signaling. In addition to transcription of autophagy-related proteins, 
acetylated FOXO1 can directly bind to ATG7 to induce autophagy. 

 

 
Figure 5. The role of FOXM1 in regulating Wnt/β-catenin signaling 
pathway and autophagy in pancreatic cancer. FOXM1 is inhibited by FOXO 
subfamily and its interaction with β-catenin can promote the binding of β-catenin to 
TCF/LEF and activate Wnt/β-catenin signaling. For autophagy, overexpression of 
FOXM1 and nuclear displacement can regulate the expression of autophagy-related 
genes, which is manifested as promoting autophagy. 

PC cells can adapt to the extreme conditions of 
hypoxia by activating HIF, which in turn transcribe 
genes related to angiogenesis and glycolysis [197]. 
According to recent studies, HIF-1α has feedback 
regulation with various lncRNAs in PC, and promotes 
PC progression and drug resistance (Fig. 6). LncRNA 
CF129145. 1 (CF129), a downstream target gene of 
HIF-1α, was inhibited by HIF-1α under hypoxic 
conditions, and CF129 reduction inhibited the 
degradation of tumor protein P53 (P53, TP53) by 
makorin ring finger protein 1 (MKRN1) 
ubiquitination. After P53 translocation into the 
nucleus and transcription of FOXC2, FOXC2 can bind 
to the HIF-1α promoter to activate its transcription. 
Thus, during hypoxia, HIF-1α/CF129/P53/FOXC2 
forms a feedback loop and promotes PC progression 
[198].  

LncRNA HIF1A-AS1 is an antisense RNA of 
HIF-1α, and HIF-1α can also activate HIF1A-AS1 
transcription [199]. In the cytoplasm, HIF1A-AS1 can 
induce Y box binding protein 1 (YB1) to interact with 
the serine/threonine kinase AKT, leading to 
phosphorylation of YB1 (pYB1). Meanwhile, pYB1 is 
recruited by HIF1A-AS1 to bind to HIF-1α mRNA, 
thereby promoting the translation of HIF-1α. Thus, 
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the positive feedback between HIF1A-AS1 and 
HIF-1α makes them highly expressed in PC and 
promotes the resistance to gemcitabine [199].  

Similarly, lncRNA NR2F1-AS1 is an antisense 
RNA of nuclear receptor subfamily 2, group F, 
member 1 (NR2F1), which is the target of NR2F1-AS1 
and is positively regulated by NR2F1-AS1. NR2F1 can 
activate AKT/mTOR pathway and up-regulate 
HIF-1α in PC. NR2F1-AS1 is also a hypoxia- 
responsive lncRNA in PC cells, which can be 
transcription by HIF-1α under hypoxic conditions. 
Therefore, NR2F1-AS1 forms a positive feedback with 
HIF-1α via the NR2F1/AKT/mTOR axis [200].  

ZEB1(zinc finger E-box binding homeobox 1) is 
an EMT activator and a key regulator of PC cell 
plasticity, metastasis and drug resistance [201, 202]. 
By binding with histone deacetylase 1 (HDAC1) and 
HIF-1α, ZEB1 can inhibit the acetylation of HIF-1α 
and further maintain the stability of HIF-1α [203]. In 

PC, ZEB1-AS1 is an antisense RNA of ZEB1, which 
can up-regulate the mRNA and protein levels of 
ZEB1[203], and lncRNA ZEB1 transcriptional 
regulator RNA (BX111, ZEBTR) induces ZEB1 
transcription by recruiting YB1[204]. Under hypoxia, 
both ZEB1-AS1 and BX111 are transcriptized and 
up-regulated by HIF-1α, which stabilizes HIF-1α 
through ZEB1, thus forming a positive feedback loop 
with HIF-1α [203, 204]. Moreover, similar to ZEB1, 
metastasis associated 1 family member 2 (MTA2) can 
form a complex with HDAC1 to deacetylate and 
stabilize HIF-1α [205]. LncRNA MTA2 transcriptional 
regulator RNA (MTA2TR) is regulated by HIF-1α 
transcription in PC and recruits activating 
transcription factor 3 (ATF3) to the MTA2 promoter to 
promote MTA2 transcription, forming a 
HIF-1α/MTA2TR/MTA2 positive feedback loop 
[206].  

 
 

 
Figure 6. The positive feedback loop between HIF-1α and lncRNAs in pancreatic cancer. LncRNAs can be divided into three categories according to the steps of 
HIF-1α expression. In the HIF-1α transcription stage, HIF-1α can inhibit the transcription of CF129 and then inhibit the ubiquitination of P53. P53 enters the nucleus and 
transcribe FOXC2, which in turn transcribe the target gene HIF-1α. PVT1 can bind to the HIF-1α promoter and promote the expression of HIF-1α. In the HIF-1α translation 
stage, HIF1A-AS1 can induce YB1 phosphorylation by AKT and recruit pYB1 to HIF-1αmRNA, thereby promoting HIF-1α translation. PVT1 spongifies miR-519d-3p and miR-143 
to stabilize HIF-1αmRNA. After HIF-1α translation, MTA2TR, BX111 and ZEB1-AS1 induce the expression of MTA2 and ZEB1 which in turn cooperate with HDACs to 
deacetylate HIF-1α. Nr2f1-as1 induces NR2F1 to up-regulate HIF-1α by activating AKT/mTOR signaling. PVT1 interacts with HIF-1α and maintains its protein level. 
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In addition to targeting miR-143 [64] and 
miR-519d-3p [128] to regulate HIF-1α expression, 
there is a positive feedback loop between PVT1 and 
HIF-1α. [207] On the one hand, PVT1 can bind to the 
HIF-1α promoter and activate its transcription, and 
bind to HIF-1α protein to up-regulate the level of 
HIF-1α after translation. On the other hand, PVT1 is 
also a downstream target of HIF-1α, and HIF-1α can 
bind to the PVT1 promoter to activate its 
transcription. Moreover, the expression level of PVT1 
and HIF-1α can stabilize each other after 
transcription, HIF-1α can down-regulate the 
attenuation rate of PVT1, and PVT1 can inhibit the 
proteasome-dependent degradation of HIF-1α. In this 
way, the positive feedback loop between PVT1 and 
HIF-1α promotes the progression of PC [207].  

HIF-1α has been widely confirmed to promote 
autophagy [208, 209], and its downstream factor 
BNIP3 has been identified in a variety of cells 
[210-213]. Furthermore, HIF-1α has been shown to 
promote the transformation of non-stem cell PC cells 
into prominin 1 positive (CD133+, PROM1 positive) 
PC stem cell-like cells under intermittent hypoxia by 
inducing autophagy [214], and to promote the EMT 
and metastatic capacity of stem cells [215]. On the 
other hand, HIF-1α is also generally believed to be 
activated by the Wnt/β-catenin pathway [216, 217] 
(Fig. 7). In PC, as a transcriptional chaperone of 
β-catenin, TCF4 positively can regulate aerobic 
glycolysis by inhibiting egl-9 family hypoxia- 
inducible factor 2 (EGLN2), leading to up-regulation 
of HIF-1α [218]. In esophageal squamous cell 
carcinoma, HIF-1α can directly bind to the promoter 
region of TCF4 and promote the expression of 
TCF4[219]. HIF-1α can also directly bind to β-catenin 
[219-221], enhance the transcriptional activity of 
HIF-1α [220, 221], but inhibit the interaction between 
TCF4 and β-catenin, making β-catenin lose the ability 
to transduce signals [220, 221]. In addition to affecting 
the transcriptional activity of β-catenin, mutant 
Kirsten rat sarcoma viral oncogene homolog (K-RAS) 
can up-regulate HIF-1α in PC cells, and HIF-1α 
overexpression increases the protein level of CDK8. 
Furthermore, CDK8 stabilizes β-catenin and activates 
Wnt/β-catenin pathway by regulating AXIN2 and 
GSK‑3β [222]. Similarly, phosphoglycerate mutase 1 
(PGAM1), a key glycolytic protein, is significantly 
overexpressed in PC metastases and associated with 
poor prognosis [223], while the use of an allosteric 
PGAM1 inhibitor restrains PC progression [224]. 
Among them, PGAM1 mainly exists in the cytoplasm 
and cell membrane and interacts with HIF-1α to 
positively regulate each other. The up-regulated 
PGAM1 promotes EMT by activating Wnt/β-catenin 
signaling pathway [223]. Thus, there may be complex 

feedback regulation between HIF and Wnt/β-catenin 
signaling pathways.  

Regarding HIF-2α, CAF cells with specific 
deletion of HIF-2α inhibited PC tumor progression 
and growth and increased the survival of 
experimental mice by 50% [225]. Down-regulation of 
HIF-2α in CAF induced tumor fibrosis and 
significantly reduced the intratumoral recruitment of 
immunosuppressive M2 macrophages and regulatory 
T cells, and improved the immunosuppressive effect 
of TME [225]. The interaction between HIF-2α and 
β-catenin in PC leads to increased activity of classical 
Wnt/β-catenin, and also promotes HIF-2α 
transcriptional activity by stabilizing HIF-2α [226]. 
HIF-2α is associated with the early development of 
PC. In normal human pancreas, HIF-2α is easily 
degraded to a very low level, but hypoxic conditions 
induce the stabilization of HIF-2α, leading to the 
development of chronic pancreatitis [227]. In the 
context of oncogenic K-RAS, pancreatic cells further 
develop into cysts similar to mucinous cystic 
neoplasms [227], the formation of which is associated 
with the activation of Wnt/β-catenin signaling [228]. 
Knockdown of HIF-2α in low-grade pancreatic 
intraepithelial neoplasia (PanIN) increased the 
number of cell lesions, but these lesions failed to 
progress to high-grade PanIN and showed decreased 
protein levels of β-catenin and drosophila mothers 
against decapentaplegic protein 4 (SMAD4) [229]. 
Interestingly, the expression of β-catenin was 
negatively regulated by SMAD4 [230], and HIF-2α 
could regulate the expression of β-catenin and 
SMAD4 independently in different ways [229]. The 
two pathways are competitive, and HIF-2α is more 
likely to up-regulate β-catenin to activate the 
canonical Wnt/β-catenin signaling pathway in the 
early progression of PC [229] (Fig. 7).  

Resistance to gemcitabine 

Mechanisms of action of gemcitabine 
Gemcitabine is the first-line drug for the 

treatment of advanced PC, and the current research 
on drug resistance focuses on gemcitabine [12]. 
Gemcitabine is a cytosine nucleoside derivative, also 
known as 2',2'-difluoro-2'deoxycytidine (dFdC), and 
its mechanism of action is related to the multiple 
effects of its intracellular metabolites on DNA 
synthesis [231]. After entering the cell via nucleoside 
transporters, gemcitabine is progressively phospho-
rylated to gemcitabine monophosphate (dFdCMP), 
gemcitabine diphosphate (dFdCDP) and gemcitabine 
triphosphate (dFdCTP) [231]. Among them, dFdCTP 
can be involved in DNA synthesis. After dFdCTP is 
incorporated into the DNA chain and ligated with 
another deoxynucleotide, the DNA strand stops 



Int. J. Biol. Sci. 2024, Vol. 20 
 

 
https://www.ijbs.com 

2711 

extending, which is called "masked chain termina-
tion". [231, 232] Similarly, this effect contributes to the 
inability of DNA repair enzymes to recognize 
dFdCTP, which interferes with the normal DNA 
repair function of cells, so that gemcitabine continues 
to exert the function of inhibiting DNA synthesis 
[232]. In addition, there are other mechanisms by 
which gemcitabine interferes with cellular regulation. 
Different metabolites increase each other's 
physiological activities and enhance the ability to 
inhibit cell growth as a whole. This interaction is 
called "self-enhancement"[232]. dFdCTP competes 
with deoxycytidine triphosphate (dCTP) for binding 
to DNA polymerase to inhibit its activity [231]. As a 
ribonucleoside reductase (RR) inhibitor, dFdCDP can 
regulate RR activity by limiting the formation of 
nucleoside triphosphate (NTP), which reduces 
cytidine diphosphate (CDP) to deoxycytidine 
diphosphate (dCDP)[233], leading to depletion of the 
deoxyribonucleotide pool required for DNA synthesis 
and enhancing the effect of dFdCTP[231]. dFdCTP can 
also inhibit the effect of deoxycytidine monophos-
phate deaminase (dCMP) on dFdCMP, preventing its 
conversion to 2',2'-difluorodeoxyuridine monophos-

phate (dFdUMP), which is then discharged from cells 
[231, 234, 235].  

Regulatory pathways for gemcitabine 
In PC, the intracellular metabolism of 

gemcitabine requires the co-regulation of multiple 
enzymes, which are regulated by a variety of miRNAs 
[236]. According to the ceRNA hypothesis [126], these 
miRNAs can be used as the mediators of lncRNA 
regulation of downstream factors, and lncRNA also 
has the potential to regulate the metabolism of 
gemcitabine cells.  

Besides these pathways, the susceptibility of PC 
cells to gemcitabine is inversely proportional to the 
levels of Wnt/β-catenin and autophagy pathways. 
LncRNA can affect the resistance of PC cells to 
gemcitabine through autophagy and Wnt/β-catenin 
pathways. In addition to PVT1 mentioned above, 
lncRNA histocompatibility leukocyte antigen 
complex P5 (HCP5) can act as ceRNA to inhibit the 
expression of miR-214-3p and target heparin binding 
growth factor (HDGF) to regulate the proliferation, 
invasion, migration, apoptosis and autophagy of PC 
cells, thus promoting gemcitabine resistance [237]. In 

 
Figure 7. The role of HIF in regulating Wnt/β-catenin signaling pathway and autophagy in pancreatic cancer. CDK8, BNIP3 and VMP1 are the downstream 
factors of HIF-1α, which activate autophagy and Wnt/β-catenin signaling. HIF-1α binds to β-catenin and inhibits the transcriptional activity of β-catenin but up-regulates the 
activity of HIF-1α. As a β-catenin transcriptional chaperone, TCF4 can inhibit EGLN2 to positively regulate aerobic glycolysis, leading to up-regulation of HIF-1α. PGAM1 mainly 
exists in cytoplasm and cell membrane and interacts with HIF-1α to positively regulate each other, while up-regulated PGAM1 promotes EMT of pancreatic cancer cells by 
activating Wnt/β-catenin signaling pathway. Different from HIF-1α, the transcriptional activity of HIF-2α is upregulated after binding to β-catenin. HIF-2α could regulate β-catenin 
and SMAD4 independently in different ways. There is a competitive relationship between the two pathways, and HIF-2α is more inclined to up-regulate β-catenin to activate the 
classical wnt signaling pathway in the early progression of pancreatic cancer 
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pancreatic stellate cell (PSC), HIF-1α can induce the 
expression of HDGF and the increased level of HDGF 
shows anti-apoptotic and pro-fibrotic effects, which 
can maintain tumor lesions [238]. Interestingly, HDGF 
was more commonly found to regulate 
Wnt/β-catenin pathway than autophagy in cancer 
cells [239-242]. The expression of Wnt/β-catenin 
pathway genes was increased in the xenograft model 
of primary non-small cell lung cancer (NSCLC), while 
Wnt/β-catenin pathway genes were significantly 
down-regulated after anti-HDGF treatment, 
especially Wnt1 and FZD were severely inhibited. 
HDGF may be a target for inhibiting the proliferation 
of cancer stem cells and preventing the recurrence of 
lung cancer after chemotherapy [243].  

HuR 
In addition to being targeted by lncRNAs to 

regulate autophagy and Wnt/β-catenin in PC, HuR 
also shows a strong correlation with gemcitabine 
resistance, which can be used as a marker for the 
treatment and prognosis of PC [244-246] (Fig. 3).  

In PC cells, HuR associates with deoxycytidine 
kinase (dCK) mRNA, which encodes a metabolic 
enzyme that can activate gemcitabine [141, 247]. 
Inducible factors including gemcitabine can increase 
the translocation of HuR from the nucleus to the 
cytoplasm, leading to the strengthening of the 
association between HuR and dCK mRNA, resulting 
in the attenuation of gemcitabine resistance [141, 145, 
247, 248]. On the other hand, HuR can up-regulate 
tumor resistance to other chemotherapeutic agents. 
WEE1 G2 checkpoint kinase (WEE1) mRNA, a mitotic 
inhibitor kinase, can be stabilized by HuR [145] to 
regulate DNA damage repair pathways [249, 250]. 
Similarly, when PC cells were under external 
environmental stress, such as DNA damage, HuR 
translocalized from the nucleus to the cytoplasm and 
then up-regulating WEE1. Positive regulation of 
WEE1 by HuR can increase H2A. X variant histone 
phosphorylation at serine-139 (γH2AX) levels, induce 
CDK1 phosphorylation, and promote cell cycle arrest 
at G2-M transition [145]. Different from the effect on 
gemcitabine, the increase of HuR contributes to DNA 
damage repair and resistance to cytotoxic therapy 
[145].  

HuR can also affect the drug resistance in PC by 
regulating glucose metabolism. Although low 
nutrient levels slow down the growth of PC cells, they 
promote chemotherapy resistance [144]. Acute 
glucose deprivation can act as a potent stimulus for 
HuR translocation from the nucleus to the cytoplasm, 
where HuR stabilizes its target mRNA. These 
transcripts encode enzymes essential for glucose 
metabolism, and these targets are essential for the 

survival of cancer cells in the metabolically impaired 
TME [251]. Silencing HuR attenuated drug resistance 
in PC cells, and drug resistance would be further 
reduced under conditions of nutrient deficiency. This 
is mainly due to the fact that HuR can export from the 
nucleus to the cytoplasm to stabilize isocitrate 
dehydrogenase (NADP(+)) 1 (IDH1) expression and 
enhance ROS scavenging, which enhances the 
reducing capacity of PC and protects PC under 
nutrient deficiency [251]. Similarly, IDH1 
overexpression also enhanced gemcitabine resistance 
in PC cells [144].  

FOXO3-FOXM1 axis  
FOXO3 and FOXM1 are a pair of transcription 

factors with opposite functions, which not only 
compete for binding to promoters of the same DNA 
motif, but also have opposite transcriptional effects on 
target genes [252]. In addition, FOXM1 is also a 
downstream target of FOXO3, and FOXM1 is 
negatively regulated by FOXO3[253, 254]. FOXO3- 
FOXM1 axis is a key regulatory target of cancer drug 
resistance [255]. The dysregulation of FOXO3-FOXM1 
axis outside the autophagy and Wnt/β-catenin 
pathways can lead to drug resistance by regulating 
drug efflux and DNA repair [255, 256] (Fig. 8). 
Membrane ATP binding cassette (ABC) transporters 
are tightly linked to drug transport, acting as protein 
pumps for drug efflux that drive the development of 
multidrug resistance (MDR) in cancer cells [257]. FOX 
proteins are transcription factors that can directly 
regulate the expression of different ABC proteins, and 
the target genes of FOXM1 include ABCC4 [258], 
ABCC5 [259, 260], ABCC10 [261], ABCG2 [262], 
FOXO3 include ABCA6 [263], ABCB1 [264], FOXO1 
include ABCA1 [265], ABCA6 [263], ABCA9 [266], 
ABCC2 [265]. Meanwhile, the up-regulated FOX 
proteins in cancer cells can generate drug resistance in 
an ABC protein-dependent manner [256, 258-262, 264, 
265]. On the other hand, chemotherapeutic agents can 
mediate their cytotoxic and cytostatic functions 
through FOXO3 and FOXM1. For example, paclitaxel 
induced FOXO3 nuclear translocation to mediate its 
cytotoxicity and in turn promoted breast cancer cell 
death due to the fact that paclitaxel can promote the 
nuclear translocation of FOXO3 by activating c-Jun 
NH2 terminal kinase 1/2 (JNK1/2) in combination 
with inhibiting the AKT pathway and activating the 
pro apoptotic molecule BCL2-interacting mediator of 
cell death (BIM, BCL2L11) to trigger apoptosis [267, 
268]. Similarly, paclitaxel can down-regulate the 
mRNA and protein levels of FOXM1 and induce 
mitotic arrest and senescence in cancer cells partly by 
down-regulating FOXM1 [269].  
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In PC, gemcitabine resistance is associated with 
FOXM1 stability [270, 271]. Ubiquitin C-terminal 
hydrolase L3 (UCHL3) as a deubiquitinating enzyme 
is able to inhibit FOXM1 ubiquitination and 
degradation [270], while Human leukocyte antigen 
F-associated transcript 10 (FAT10) as a ubiquitin like 
protein is able to inhibit FOXM1 ubiquitination and 
stabilize FOXM1 expression by competing with 
ubiquitin for binding to FOXM1 [271]. The 
down-regulation of UCHL3 and FAT10 increased 
FOXM1 ubiquitination, and also promoted the 
sensitivity of PC cells to gemcitabine [270, 271]. 
FOXM1 expression was also up-regulated in the 
gemcitabine-resistant cell line model [272].  

For other chemotherapeutic drugs, such as 
paclitaxel, FOXM1 can induce paclitaxel resistance in 
PC through different pathways. Prohibitin 1 (PHB1) is 
a downstream factor of FOXM1, which can recruit 
Raf-1 proto-oncogene (RAF1) to Caveolin-1-enriched 
lipid rafts and activates the RAS-RAF-MEK-ERK 
pathway leading to drug resistance [273]. In the 
cytoplasm, FOXM1 can bind to PHB1 and stabilize 

PHB1 to shift it to the cell membrane. PHB1 depletion 
can also down-regulate the level of FOXM1, and there 
is a positive feedback regulation of FOXM1/PHB1/ 
RAF-MEK-ERK [273, 274]. In addition, ABCA2 is also 
regulated by FOXM1/PHB1/RAF-MEK-ERK path-
way. Overexpression of FOXM1 or depletion of PHB1 
affected ABCA2 protein and mRNA levels [273]. The 
expression levels of FOXM1, PHB1, ABCA2 and 
p-ERK1/2 were up-regulated in PC cells and 
paclitaxel-resistant cell lines, and were also 
proportional to the drug dose [273]. Genistein is a 
natural isoflavone found in legumes with antitumor 
effects [275]. It has been reported to affect the 
incidence of PC [276, 277] and inhibit the growth of 
cancer cells in vitro and in vivo [278], which is a 
potential chemopreventive and therapeutic agent for 
PC. After treatment with genistein, the expression of 
FOXM1 and its downstream genes was down- 
regulated, and the growth and invasion of PC cells 
were inhibited [279]. Whereas overexpression of 
FOXM1 reduced genistein-induced cell growth 
inhibition and apoptosis [279]. NOSH-aspirin, a novel 

 
Figure 8. The role of FOXO3-FOXM1 axis in regulating drug resistance in pancreatic cancer. A variety of ABC transporters are the target genes of FOXO1, 
FOXO3 and FOXM1, which can make pancreatic cancer cells resistant to multiple drugs. During FOXM1 deubiquitination, FAT10 competitively binds with ubiquitin to inhibit 
FOXM1's ubiquitination, while UCHL3 can deubiquitinate the ubiquitinated FOXM1, both of which reduce the sensitivity of pancreatic cancer cells to gemcitabine. PHB1 is a 
downstream factor of FOXM1, which can activate the RAS-RAF-MEK-ERK pathway to generate a positive feedback loop and lead to the development of paclitaxel resistance. 
MiR-223 targets FOXO3 to acquire CDDP resistance in cancer cells. cGMP inhibited FOXO3 and affected the CSC phenotype of pancreatic cancer cells through the 
FOXO3/LKB1/AMPK/PGC-1β/PDHA1/CD44 axis. FOXO3 can maintain CD44 expression and make CSC acquire drug resistance. 
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anti-inflammatory agent, also has anticancer effects 
and can significantly reduce the growth and 
progression of PC [280, 281]. The high level FOXM1 of 
tumors in a xenograft mouse model of PC was also 
observably inhibited by NOSH-aspirin [282]. 
Dacomitinib can inhibit the growth and proliferation 
of PC cells by down-regulating FOXM1 and its 
downstream targets, such as polo-like kinase 1 
(PLK1), survivin, cyclin B1 (CCNB1), c-Myc and 
aurora kinase B (AURKB) [283].  

In contrast to FOXM1, FOXO3 is regarded as a 
tumor suppressor and the overexpression of FOXO3 
can inhibit the proliferation, tumorigenic potential 
and invasiveness of various cancer cells [284]. 
Similarly, downregulation of FOXO3 can promote PC 
development [158]. But the difference is that the role 
of FOXO3 on drug sensitivity may be multifaceted.  

In cholangiocarcinoma (CCA), LINC01714 was 
shown to be recurrently down-regulated in clinical 
samples and significantly correlated with overall 
survival in patients, and overexpression of 
LINC01714 inhibited the proliferation, migration and 
invasion of cancer cells both in vitro and in vivo [285]. 
Moreover, LINC01714 interacted with FOXO3 with 
increased FOXO3 protein level but decreased FOXO3 
phosphorylation at Ser318 site. Interestingly, 
LINC01714 enhanced gemcitabine sensitivity of CCA 
tumor cells by regulating FOXO3 phosphorylation 
[285]. This may be related to the output of FOXO3 
phosphorylation from the nucleus and the loss of its 
transcriptional activity [286]. In NSCLC, both 
tripartite motif containing 22 (TRIM22) and troponin 
C1 (TNNC1), downstream factors negatively 
regulated by FOXO3, are up-regulated in cancer cells 
and gemcitabine resistant cell lines and confer 
gemcitabine resistance by protective autophagy [287, 
288].  

In different cancers, the variant expression of 
FOXO3 has variant effects on prognosis. High 
expression of FOXO3 has a favorable prognosis in 
acute myeloid leukemia [289], breast cancer [290], 
bladder cancer [291], gastric cancer [292], 
nasopharyngeal carcinoma [293] and human ovarian 
cancer [294]. But in hepatocellular carcinoma [295, 
296] and PC [297], high levels of activated FOXO3 
lead to poor patient prognosis. This discrepancy may 
be due to P53 mutations. In the case of P53 mutations, 
FOXO3 acts as a tumor suppressor, and wild-type P53 
alters the site at which FOXO3 recognizes target 
promoters, thereby inhibiting FOXO3 induced 
apoptosis and instead potentiating chemoresistance 
and survival of cells [298].  

For PC, FOXO3 is a target of miR-223, and 
downregulation of FOXO3 by miR-233 leads to the 

proliferation, apoptosis, and cisplatin resistance in 
cancer cells [299]. Furthermore, FOXO3 is essential for 
cluster of differentiation-44 (CD44) expression and 
cancer stem cell (CSC) properties, and inhibition of 
FOXO3 by cyclic guanosine monophosphate (cGMP) 
[297] as well as through FOXO3/LKB1/AMPK/ 
PGC-1β (peroxisome proliferator-activated receptor 
gamma, coactivator 1 beta)/PDHA1 (pyruvate 
dehydrogenase E1 subunit alpha 1)/CD44 axis 
influences the CSC phenotype of PC cells [300]. 
FOXO3 to maintain CD44 expression enables CSCs to 
acquire drug resistance [297, 300]. Cardamonin 
(CAR), a flavonoid present in the genus arangal, 
inhibits PC cell growth and promotes apoptosis [301, 
302]. After controlled experiments, CAR can promote 
the chemosensitivity of PC cells to gemcitabine, and 
cell viability is further decreased after combined use 
of gemcitabine. These functions are achieved by CAR 
through FOXO3 promotion and FOXM1 inhibition 
[302].  

Hypoxia signaling pathway 
The main role of HIFs in mediating tumor 

biology is caused by hypoxia [192] and the hypoxic 
environment of PC is in turn associated with its 
extreme TME [190, 191]. The function of HIFs to 
induce drug resistance is tightly linked to hypoxia 
and the TME (Fig. 9). Under hypoxic conditions, 
HIF-α remains stable and translocates to the nucleus 
to bind to HIF-1β, which in turn induces downstream 
target gene transcription [194]. Typical among the 
factors downstream of HIF that have been associated 
with drug resistance are the ABC transporters, which 
act as protein pumps to efflux drugs enabling cells to 
acquire drug resistance [257]. Hypoxia-induced 
HIF-1α and HIF-2α have a promoting effect on the 
expression of ABC transporters, including ABCB1, 
ABCB5, ABCC1, and ABCG2, and induce drug 
resistance in cancer cells [303].  

HIF-1α can directly bind to the promoters of 
ABCC1 [304], ABCB1 [305], ABCB6 [306], ABCA1 
[307] and ABCG2 [308], and HIF-2α can directly bind 
to the promoter of ABCG2 [309] to promote the 
transcriptional expression of ABC proteins. In 
addition, HIF-1α can also transcribe specific protein 1 
(SP1), which can activate the ABCC8 promoter [310]. 
For PC, HIF-1 has been confirmed to make cancer cells 
resistant to gemcitabine and 5-Fluorouracil (5-FU) by 
regulating ABCB1 and ABCG2 [308, 311]. While 
quercetin, a flavonoid that can inhibit the efflux 
activity of ABCB1, in combination with gemcitabine 
can down-regulate HIF-1α and up-regulate the 
apoptosis regulator P53, enhancing the cytotoxic 
activity of gemcitabine [312].  
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Figure 9. The role of HIF-1α in regulating drug resistance in pancreatic cancer. HIF-1α can make pancreatic cancer resistant in three ways. First, multiple ABC 
transporters are downstream target genes of HIF-1α, and HIF-1α also upregulates the transcription factor Sp1, which transcribes ABCC8. Up-regulation of ABC transporters 
promote drug efflux and make cells acquire drug resistance. Secondly, HIF-1α can regulate glucose metabolism in pancreatic cancer cells hENT1 promotes the nuclear 
translocation of HIF-1α, and MUC1 promotes the nuclear displacement of NF-κB and HIF-1α, thereby altering the glucose metabolism level of pancreatic cancer cells. After 
inducing the transcription of glycolytic genes (TKT and CTPS1), the synthesis of dCTP is increased, which can compete with gemcitabine for DNA synthesis and inhibit the 
cytotoxicity of gemcitabine. Finally, a variety of proteins in the target genes of HIF-1α are transferred to the cell membrane or secreted to the extracellular to participate in the 
regulation of tumor microenvironment. Tumor microenvironment affects HIF-1α expression and drug resistance by maintaining hypoxic environment, regulating intercellular 
signaling and forming physical barriers. 

 
Besides, hypoxia-induced HIF stabilization can 

reprogram the metabolic way of cancer cells and 
produce drug resistance. HIF-1 can activate the 
transcription of glucose transporters and glycolytic 
enzymes and increase glucose metabolism through 
the glycolytic pathway, but reduce glucose entry into 
the tricarboxylic acid cycle (TCA cycle) [313], and this 
metabolic pattern is beneficial to cancer cell 
proliferation. Under hypoxic and glucose deprivation 
conditions, HIF can activate anaerobic metabolism of 
PC cells and inhibit their apoptosis [314]. Meanwhile, 
mucin 1 (MUC1), a polymorphic mucin-like protein 
that is overexpressed in PC, can stabilize HIF-1α and 
promote HIF-1α recruitment to glycolytic gene 
promoters (transketolase (TKT) and CTP synthase 1 
(CTPS1)) in a hypoxia-dependent manner [315]. 
MUC1 is also a target gene of HIF-1α [316], and 
MUC1 and HIF-1α can regulate each other in a 
positive feedback manner. MUC1 and HIF-1α can 
synergistically regulate glucose metabolism and 
pyrimidine biosynthesis in gemcitabine-resistant PC 
cells, resulting in increased nucleotide synthesis and 

accumulation of dCTP, which can cause competitive 
inhibition of active gemcitabine, thus producing 
gemcitabine resistance [317].  

The level of human equilibrative nucleoside 
transporter 1 (hENT1) is tightly associated with the 
sensitivity of PC cells to gemcitabine and can be used 
as a biological indicator to predict the efficacy and 
prognosis of gemcitabine [318-321]. HENT1 was 
down-regulated in gemcitabine resistant PC cells, and 
overexpression of hENT1 significantly reversed 
chemoresistance. Specifically, hENT1 can induce the 
development of drug resistance by regulating glucose 
transport and glycolysis through HIF-1α and c-Myc, 
low hENT1 and c-Myc expression in drug-resistant 
cells, highly active HIF-1α potentiates glycolysis and 
generates chemoresistance, whereas overexpression 
of hENT1 elevated c-Myc expression, suppressed 
HIF-1α, restored glucose transport and glycolysis in 
cells and reversed gemcitabine induced drug 
resistance [322].  

The effects of TME and PC cells are reciprocal. In 
addition to maintaining the hypoxic environment of 



Int. J. Biol. Sci. 2024, Vol. 20 
 

 
https://www.ijbs.com 

2716 

cancer cells to stabilize HIF-1α and activate its 
downstream target genes, CAF also regulate cancer 
cell metabolism through paracrine pathways. 
Exosome miR-421 secreted by CAF can down-regulate 
SIRT3 in PC cells [323]. SIRT3 is a target of miR-421 
and also located upstream of HIF-1α. It can inhibit the 
expression and activity of HIF-1α in different cancer 
cells through AMPK/mTOR axis [324], FOXO3 [325] 
and reducing ROS [326]. In PC, SIRT3 inhibited the 
transcription of HIF-1α by deacetylating acetylation of 
Histone H3 at lysine9 (H3K9ac), and miR-421 with 
high expression of CAF promoted the proliferation of 
PC cells [323].  

In contrast, HIF-1α can generate a desmoplastic 
response that solidifies the TME of PC [327]. The sonic 
hedgehog ligand (SHH) is a member of the hedgehog 
proteins and a frequently used signaling transmitter 
in mediating intercellular communication [328]. In 
PC, SHH can regulate the physiological activities of 
PC cells, including desmoplasia, cancer cell 
metastasis, and lymphatic vessel formation, through 
paracrine secretion [329, 330]. It has been reported 
that SHH is expressed in PC cells in a HIF dependent 
manner and induces the desmoplastic response of 
CAFs through a paracrine manner [327]. While SHH 
activates PSCs to secrete high levels of perineural 
invasion (PNI) -related molecules to promote PNI in 
PC [331]. The desmoplastic connective tissue and PNI 
further maintain the hypoxic environment of the 
tumor and stabilizes HIF, allowing PC cells to acquire 
drug resistance.  

In the same way, CXCL12/CXCR4 (C-X-C motif 
chemokine ligand 12/C-X-C motif chemokine 
receptor 4) signaling axis can confer drug resistance to 
PC cells and participate in the invasion and metastasis 
of PC [332, 333]. CXCL12 secreted by stromal cells 
binded to the receptor CXCR4 on PC cells, thereby 
activating AKT and ERK, leading to nuclear 
accumulation of NF-kB. As a result, nuclear NF-kB 
directly binded to the SHH promoter and induces 
SHH expression [334]. When PC cells were treated 
with gemcitabine, ROS was up-regulated and 
mediated the nuclear translocation of NF-kB and 
HIF-1α by activating ERK1/ 2 and AKT. Then NF-kB 
and HIF-1α bind to the CXCR4 promoter, up-regulate 
CXCR4 and lead to enhanced motility and invasion of 
PC cells [335]. The adverse reactions of gemcitabine 
treatment were reflected. First, gemcitabine may 
enhance the anti-apoptotic pathway downstream of 
CXCR4, thereby making cancer cells resistant. In 
addition, gemcitabine may enhance the metastasis of 
PC cells to other CXCL12 overexpression 
environments [335].  

Lysyl oxidase (LOX) and lysyl oxidase-like 
protein (LOXL) are copper-dependent amine oxidases 

that catalyze the covalent cross-linking of collagen 
and elastin in extracellular matrix (ECM), which are 
related to the progression of cancer [336-338]. There is 
a hypoxia response element (HRE) on the promoter of 
human LOX gene to respond to HIF and transcribe 
LOX protein [339]. LOX and LOXL levels in PC cells 
and PSCs increased with HIF-1α activity [340, 341]. 
LOXL2 can reduce the drug concentration in the 
tumor during chemotherapy. This may be due to 
LOXL2 forming a physical barrier to inhibit the 
diffusion of gemcitabine by increasing fibrous 
collagen and then increasing ECM stiffness, or it may 
be due to the collapse of blood vessels in the tumor 
caused by LOXL2, which can limit the transport of 
gemcitabine into the tumor interior [342].  

Correspondingly, matrix metalloproteinase 
(MMP) is a kind of proteolytic enzyme, which can 
decompose ECM protein, promote angiogenesis, and 
is related to tumor proliferation and metastasis [343, 
344]. MMP has the opposite effect to LOX, and 
inhibition of LOX can promote the expression of MMP 
[345, 346]. However, LOX has little effect on the 
activity of MMP in rat aortic smooth muscle cells 
[347], and even in gastric cancer [348], cervical cancer 
[349], colorectal cancer [350], non-small cell lung 
cancer [351], breast cancer [352], LOX is positively 
correlated with MMPs or increases MMPs activity, 
while in liver cancer, lysyl oxidase propeptide 
(LOX-PP) inhibits liver cancer cell migration by 
down-regulating MMPs expression [353]. The 
relationship between MMP and LOX remains unclear.  

In PC, HIF-1α can promote the transcription of 
membrane type 2 matrix metalloproteinase (MT2- 
MMP) [354, 355], and further, MT2-MMP participates 
in the progression of PC by activating MMP-2[356]. 
MMP-2 in PC cells and PSC also depends on HIF-1α 
regulation [340]. In addition, HIF-1α binds to the HRE 
on the fascin promoter and activates its mRNA 
transcription, and overexpression of fascin can 
increase MMP-2 expression and promote PC cell 
migration and invasion [357]. Moreover, 
ROS/MMP-3 signaling pathway is activated by high 
glucose and up-regulates ribonucleotide reductase 
catalytic subunit M1 (RRM1) expression, a member of 
ribonucleoside reductase, inducing gemcitabine 
resistance in PC [358]. MT1-MMP up-regulates the 
expression of high mobility group A2 (HMGA2), a 
non-histone DNA-binding nuclear protein involved 
in chromatin remodeling and gene transcription, to 
attenuate the therapeutic effect of gemcitabine in PC 
[359]. In addition, the use of MMP-2 inhibitor tissue 
inhibitor metalloproteinase 2 (TIMP2) and MMP-9 
inhibitor TIMP1 increased the inhibitory effect of 
hyperthermia combined with gemcitabine on the 
invasion of gemcitabine-resistant PC cells [360].  
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Vascular endothelial-derived growth factor 
(VEGF) is another key factor in pancreatic tumor 
angiogenesis. VEGF plays an important role in the 
whole process of angiogenesis, and its expression is 
mainly regulated by HIF [361]. In PC, hypoxia can 
induce the translocation of pyruvate kinase M2 
(PKM2) and nuclear factor kappa B subunit 3 (p65, 
NFKB3) to the nucleus of PC cells, and PKM2 can 
activate NF-kB to mediate the transcription of HIF-1α 
and its target gene VEGF [197]. In addition, PKM2 is a 
co-activator of HIF-1α and its downstream target gene 
[362]. VEGF can stimulate PC cells to up-regulate 
HIF-1α and enhance glycolysis [363]. In the PC 
transplantation model, gemcitabine can reduce the 
protein levels of VEGF, VEGFR2, platelet and 
endothelial cell adhesion molecule 1 (CD31, 
PECAM1) and HIF-1α to reduce blood vessel 
formation, thereby reducing tumor growth [364]. 
While using other drugs, the small molecule 
compound LB-100 enhanced the cytotoxicity of 
doxorubicin by increasing angiogenesis through the 
HIF-1α/VEGF axis [365]. However, inositol 
tripyrophosphate (ITPP) can down-regulate HIF-1α, 
VEGF and LOX and improve the sensitivity of 
gemcitabine treatment, which may be caused by the 
improvement of vascular structure and the reduction 
of connective tissue proliferation [366]. Metformin can 
inhibit the mTOR/HIF-1α/VEGF signaling cascade to 
inhibit the progression of gemcitabine-resistant PC 
[367]. At the same time, metformin can also 
down-regulate SHH to show the effect of of inhibiting 
PSCs. Among the downstream effects, the inhibition 
of VEGF leads to the reduction of neovascularization, 
the weakening of fibroproliferative reaction, and the 
enhancement of the anti-tumor effect of gemcitabine 
[368].  

In general, the effect of TME on tumor has two 
sides, and therapeutic drugs also start from both 
sides. By reducing angiogenesis and promoting 
connective tissue proliferation, the cancer cells are 
kept in a state of hypoxia and malnutrition for a long 
time, and at the same time, the metastasis of cancer 
cells is blocked at the physical level to achieve the 
effect of tumor inhibition. On the contrary, improving 
the vascular structure and inhibiting the proliferation 
of connective tissue can make the drug directly reach 
the inside of the tumor, which is beneficial to the 
anti-tumor effect of the drug.  

Conclusion 
LncRNA can regulate autophagy and Wnt/β- 

catenin pathway from multiple perspectives. Through 
the common MRE elements, the information exchange 
between lncRNA-miRNA-mRNA can be realized. In 
addition to sponging miRNA, lncRNA can also 

directly bind to proteins to regulate cell physiological 
activities. Extensive studies have determined that 
lncRNAs can regulate intermediate mediators, such as 
HuR, FOX and HIF, in the process of PC, while 
regulating autophagy and Wnt/β-catenin pathway, 
and further regulate chemotherapy resistance of PC 
cells. Although studies on PC resistance have mainly 
focused on gemcitabine, these several intermediate 
mediators also have an impact on the efficacy of other 
drugs. In PC, not only the differentially expressed 
lncRNAs may serve as PC markers and targets for 
therapy, intermediate mediators hold the same 
potential. Furthermore, lncRNAs show strong specific 
expression in different tissues and cancers. Whether 
the specific expression of lncRNA is consistent with 
the drug resistance pathway of PC remains to be 
further investigated.  
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cholangiocarcinoma; CCNB1: cyclin B1; CCND1: 
cyclin D1; CD133+: prominin 1, PROM1 positive; 
CD31: platelet and endothelial cell adhesion molecule 
1, PECAM1; CD44: cluster of differentiation-44; CDK: 
cyclin dependent kinase; ceRNA: competitive 
endogenous RNA; CERS6-AS1: ceramide synthase 6 
antisense RNA 1; cGMP: cyclic guanosine 
monophosphate; CK1: casein kinase 1; CNBP: cellular 
nucleic acid binding protein; CSC: cancer stem cell; 
CTBP1: C-terminal binding protein 1; CTPS1: CTP 
synthase 1; CXCL12: C-X-C motif chemokine ligand 
12; CXCR4: C-X-C motif chemokine receptor 4; 
DDIT4-AS1: DNA damage inducible transcript 4 
antisense RNA 1; DKK1: dickkopf Wnt signaling 
pathway inhibitor 1; DLX6-AS1: distal-less homeobox 
6 antisense RNA 1; DVL: dishevelled segment polarity 
protein; ECM: extracellular matrix; EGLN2: egl-9 
family hypoxia-inducible factor 2; EIF3B: eukaryotic 
translation initiation factor 3 subunit B; EMT: 
epithelial-mesenchymal transition; EVA1A: eva-1 
homolog A; EZH2: enhancer of zeste 2 polycomb 
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repressive complex 2 subunit; FAM83H: family with 
sequence similarity 83 member H; FAT10: human 
leukocyte antigen F-associated transcript 10; 
FGD5-AS1: FYVE, RhoGEF, and PH domain 
containing 5 antisense RNA 1; FOLFIRINOX: 
combination chemotherapy with fluorouracil, 
leucovorin, irinotecan, and oxaliplatin; FOX: forkhead 
box; FZD: Frizzled; GABARAPL1: GABA type A 
receptor associated protein like 1; GEP-NEN: 
gastroenteropancreatic neuroendocrine neoplasm; 
GSK3: glycogen synthase kinase-3; H19: H19 
imprinted maternally expressed transcript; H2AX: 
H2A. X variant histone; H3K27me: methylation of 
Histone H3 at lysine 27; H3K9ac: acetylation of 
Histone H3 at lysine 9; HCP5: histocompatibility 
leukocyte antigen complex P5; HDAC1: histone 
deacetylase 1; HDGF: heparin binding growth factor; 
hENT1: human equilibrative nucleoside transporter 1; 
HIF: hypoxia inducible factor; HMGA2: high mobility 
group A2; HMGB1: high mobility group box 1; 
HOTAIR: homeobox transcript antisense intergenic 
RNA; HOXA9: homeobox A9; HRE: hypoxia response 
element; HuR: human antigen R; IDH1: isocitrate 
dehydrogenase (NADP(+)) 1; IPO8: importin 8; 
ITGB1: integrin subunit beta 1; ITPP: inositol 
tripyrophosphate; JNK1/2: C-Jun NH2 terminal 
kinase 1/2; K-RAS: Kirsten rat sarcoma viral 
oncogene homolog; LC3: microtubule associated 
protein 1 light chain 3; LEF: lymphoid 
enhancer-binding factor; LINC: long intergenic 
non-protein coding RNA; lncRNA: long non coding 
RNA; LOX: lysyl oxidase; LRP: low density 
lipoprotein receptor related protein; LZTS1-AS1: 
leucine zipper tumor suppressor 1 antisense RNA 1; 
m6A: N6-methyladenosine; MALAT1: metastasis 
associated lung adenocarcinoma transcript 1; MDR: 
multidrug resistance; METTL: methyltransferase; 
MITF: melanocyte inducing transcription factor; 
MKRN1: makorin ring finger protein 1; MMP: matrix 
metalloproteinase; MnSOD: manganese superoxide 
dismutase, SOD2; MRE: miRNA recognition element; 
MTA2: metastasis associated 1 family member 2; 
MTA2TR: MTA2 transcriptional regulator RNA; 
MT2-MMP: Membrane type 2 matrix 
metalloproteinase; mTOR: mammalian target of 
rapamycin; MUC1: mucin 1; NF-kB: nuclear 
transcription factor-kappa B; NNT-AS1: nicotinamide 
nucleotide transhydrogenase antisense RNA 1; NOX4: 
NADPH oxidase 4; NR2F1: nuclear receptor 
subfamily 2, group F, member 1; NSCLC: non-small 
cell lung cancer; OTUB1: ovarian tumor family 
deubiquitinase ubiquitin aldehyde binding 1; P53: 
tumor protein P53, TP53; P62: sequestosome 1, 
SQSTM1; p65: nuclear factor kappa B subunit 3, 
NFKB3; PaCSC: pancreatic cancer stem cell; PanIN: 

pancreatic intraepithelial neoplasia; PARP: poly 
ADP-ribose polymerase; PC: pancreatic cancer; 
PDAC: pancreatic ductal adenocarcinoma; PDHA1: 
pyruvate dehydrogenase E1 subunit alpha 1; PDL1: 
programmed cell death 1 ligand 1; PGAM1: 
phosphoglycerate mutase 1; PGC-1β: peroxisome 
proliferator-activated receptor gamma, coactivator 1 
beta; PHB1: prohibitin 1; PIK3C3: 
phosphatidylinositol 3-kinase catalytic subunit type 3; 
PKM2: pyruvate kinase M2; PLK1: polo-like kinase 1; 
pNET: pancreatic neuroendocrine tumor; PNI: 
perineural invasion; PRC2: polycomb repressive 
complex 2; PSC: pancreatic stellate cell; PTK7: protein 
tyrosine kinase 7; PVT1: plasmacytoma variant 
translocation 1; PYGO2: pygopus family PHD finger 
2; Rab7: RAS-related GTP-binding protein 7; RAF1: 
Raf-1 proto-oncogene; RBP: RNA binding proteins; 
ROS: reactive oxygen species; RR: ribonucleoside 
reductase; RRM1: ribonucleotide reductase catalytic 
subunit M1; SHH: sonic hedgehog ligand; SIRT1: 
sirtuin 1; SMAD4: drosophila mothers against 
decapentaplegic protein 4; SNHG16: small nucleolar 
RNA host gene 16; SP1: specific protein 1; TCA cycle: 
tricarboxylic acid cycle; TCF: transcription factor; 
TCF4: T-cell-specific transcription factor 4; TEX10: 
testis expressed 10; TFE3: transcription factor binding 
to IGHM enhancer 3; TFEB: transcription factor EB; 
TIA1: TIA1 cytotoxic granule associated RNA binding 
protein; TIMP1: tissue inhibitor metalloproteinase 1; 
TIP60: lysine acetyltransferase 5, KAT5; TKT: 
transketolase; TLR4: Toll-like receptor 4; TME: tumor 
microenvironment; TNNC1: troponin C1; TOP2A: 
DNA topoisomerase II alpha; TPT1: tumor protein, 
translationally-controlled 1; TRIM22: tripartite motif 
containing 22; TSC: tuberous sclerosis complex; 
TSLNC8: tumor suppressive lncRNA on chromosome 
8p12; TWIST1: twist family bHLH transcription factor 
1; UCA1: urothelial cancer associated 1; UCHL3: 
ubiquitin C-terminal hydrolase L3; ULK1: Unc-51 like 
autophagy activating kinase 1; UPF1: upstream 
frameshift 1; UVRAG: UV radiation resistance 
associated; VEGF: vascular endothelial-derived 
growth factor; VMP1: vacuole membrane protein 1; 
WDR5: WD repeat domain 5; WEE1: WEE1 G2 
checkpoint kinase; WIF1: Wnt inhibitory factor 1; 
WIPI1: WD repeat domain, phosphoinositide 
interacting 1; WTAP: WT1 associated protein; 
WTAPP1: WT1 associated protein pseudogene 1; YB1: 
Y box binding protein 1; ZEB1: Zinc finger E-box 
binding homeobox 1; ZEB2-AS1: zinc finger E-box 
binding homeobox 2 antisense RNA 1 
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